213 lines
6.5 KiB
Python
213 lines
6.5 KiB
Python
|
"""Functions for computing and verifying regular graphs."""
|
||
|
import networkx as nx
|
||
|
from networkx.utils import not_implemented_for
|
||
|
|
||
|
__all__ = ["is_regular", "is_k_regular", "k_factor"]
|
||
|
|
||
|
|
||
|
@nx._dispatch
|
||
|
def is_regular(G):
|
||
|
"""Determines whether the graph ``G`` is a regular graph.
|
||
|
|
||
|
A regular graph is a graph where each vertex has the same degree. A
|
||
|
regular digraph is a graph where the indegree and outdegree of each
|
||
|
vertex are equal.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
G : NetworkX graph
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
bool
|
||
|
Whether the given graph or digraph is regular.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> G = nx.DiGraph([(1, 2), (2, 3), (3, 4), (4, 1)])
|
||
|
>>> nx.is_regular(G)
|
||
|
True
|
||
|
|
||
|
"""
|
||
|
n1 = nx.utils.arbitrary_element(G)
|
||
|
if not G.is_directed():
|
||
|
d1 = G.degree(n1)
|
||
|
return all(d1 == d for _, d in G.degree)
|
||
|
else:
|
||
|
d_in = G.in_degree(n1)
|
||
|
in_regular = all(d_in == d for _, d in G.in_degree)
|
||
|
d_out = G.out_degree(n1)
|
||
|
out_regular = all(d_out == d for _, d in G.out_degree)
|
||
|
return in_regular and out_regular
|
||
|
|
||
|
|
||
|
@not_implemented_for("directed")
|
||
|
@nx._dispatch
|
||
|
def is_k_regular(G, k):
|
||
|
"""Determines whether the graph ``G`` is a k-regular graph.
|
||
|
|
||
|
A k-regular graph is a graph where each vertex has degree k.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
G : NetworkX graph
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
bool
|
||
|
Whether the given graph is k-regular.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> G = nx.Graph([(1, 2), (2, 3), (3, 4), (4, 1)])
|
||
|
>>> nx.is_k_regular(G, k=3)
|
||
|
False
|
||
|
|
||
|
"""
|
||
|
return all(d == k for n, d in G.degree)
|
||
|
|
||
|
|
||
|
@not_implemented_for("directed")
|
||
|
@not_implemented_for("multigraph")
|
||
|
@nx._dispatch(edge_attrs="matching_weight")
|
||
|
def k_factor(G, k, matching_weight="weight"):
|
||
|
"""Compute a k-factor of G
|
||
|
|
||
|
A k-factor of a graph is a spanning k-regular subgraph.
|
||
|
A spanning k-regular subgraph of G is a subgraph that contains
|
||
|
each vertex of G and a subset of the edges of G such that each
|
||
|
vertex has degree k.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
G : NetworkX graph
|
||
|
Undirected graph
|
||
|
|
||
|
matching_weight: string, optional (default='weight')
|
||
|
Edge data key corresponding to the edge weight.
|
||
|
Used for finding the max-weighted perfect matching.
|
||
|
If key not found, uses 1 as weight.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
G2 : NetworkX graph
|
||
|
A k-factor of G
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> G = nx.Graph([(1, 2), (2, 3), (3, 4), (4, 1)])
|
||
|
>>> G2 = nx.k_factor(G, k=1)
|
||
|
>>> G2.edges()
|
||
|
EdgeView([(1, 2), (3, 4)])
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] "An algorithm for computing simple k-factors.",
|
||
|
Meijer, Henk, Yurai Núñez-Rodríguez, and David Rappaport,
|
||
|
Information processing letters, 2009.
|
||
|
"""
|
||
|
|
||
|
from networkx.algorithms.matching import is_perfect_matching, max_weight_matching
|
||
|
|
||
|
class LargeKGadget:
|
||
|
def __init__(self, k, degree, node, g):
|
||
|
self.original = node
|
||
|
self.g = g
|
||
|
self.k = k
|
||
|
self.degree = degree
|
||
|
|
||
|
self.outer_vertices = [(node, x) for x in range(degree)]
|
||
|
self.core_vertices = [(node, x + degree) for x in range(degree - k)]
|
||
|
|
||
|
def replace_node(self):
|
||
|
adj_view = self.g[self.original]
|
||
|
neighbors = list(adj_view.keys())
|
||
|
edge_attrs = list(adj_view.values())
|
||
|
for outer, neighbor, edge_attrs in zip(
|
||
|
self.outer_vertices, neighbors, edge_attrs
|
||
|
):
|
||
|
self.g.add_edge(outer, neighbor, **edge_attrs)
|
||
|
for core in self.core_vertices:
|
||
|
for outer in self.outer_vertices:
|
||
|
self.g.add_edge(core, outer)
|
||
|
self.g.remove_node(self.original)
|
||
|
|
||
|
def restore_node(self):
|
||
|
self.g.add_node(self.original)
|
||
|
for outer in self.outer_vertices:
|
||
|
adj_view = self.g[outer]
|
||
|
for neighbor, edge_attrs in list(adj_view.items()):
|
||
|
if neighbor not in self.core_vertices:
|
||
|
self.g.add_edge(self.original, neighbor, **edge_attrs)
|
||
|
break
|
||
|
g.remove_nodes_from(self.outer_vertices)
|
||
|
g.remove_nodes_from(self.core_vertices)
|
||
|
|
||
|
class SmallKGadget:
|
||
|
def __init__(self, k, degree, node, g):
|
||
|
self.original = node
|
||
|
self.k = k
|
||
|
self.degree = degree
|
||
|
self.g = g
|
||
|
|
||
|
self.outer_vertices = [(node, x) for x in range(degree)]
|
||
|
self.inner_vertices = [(node, x + degree) for x in range(degree)]
|
||
|
self.core_vertices = [(node, x + 2 * degree) for x in range(k)]
|
||
|
|
||
|
def replace_node(self):
|
||
|
adj_view = self.g[self.original]
|
||
|
for outer, inner, (neighbor, edge_attrs) in zip(
|
||
|
self.outer_vertices, self.inner_vertices, list(adj_view.items())
|
||
|
):
|
||
|
self.g.add_edge(outer, inner)
|
||
|
self.g.add_edge(outer, neighbor, **edge_attrs)
|
||
|
for core in self.core_vertices:
|
||
|
for inner in self.inner_vertices:
|
||
|
self.g.add_edge(core, inner)
|
||
|
self.g.remove_node(self.original)
|
||
|
|
||
|
def restore_node(self):
|
||
|
self.g.add_node(self.original)
|
||
|
for outer in self.outer_vertices:
|
||
|
adj_view = self.g[outer]
|
||
|
for neighbor, edge_attrs in adj_view.items():
|
||
|
if neighbor not in self.core_vertices:
|
||
|
self.g.add_edge(self.original, neighbor, **edge_attrs)
|
||
|
break
|
||
|
self.g.remove_nodes_from(self.outer_vertices)
|
||
|
self.g.remove_nodes_from(self.inner_vertices)
|
||
|
self.g.remove_nodes_from(self.core_vertices)
|
||
|
|
||
|
# Step 1
|
||
|
if any(d < k for _, d in G.degree):
|
||
|
raise nx.NetworkXUnfeasible("Graph contains a vertex with degree less than k")
|
||
|
g = G.copy()
|
||
|
|
||
|
# Step 2
|
||
|
gadgets = []
|
||
|
for node, degree in list(g.degree):
|
||
|
if k < degree / 2.0:
|
||
|
gadget = SmallKGadget(k, degree, node, g)
|
||
|
else:
|
||
|
gadget = LargeKGadget(k, degree, node, g)
|
||
|
gadget.replace_node()
|
||
|
gadgets.append(gadget)
|
||
|
|
||
|
# Step 3
|
||
|
matching = max_weight_matching(g, maxcardinality=True, weight=matching_weight)
|
||
|
|
||
|
# Step 4
|
||
|
if not is_perfect_matching(g, matching):
|
||
|
raise nx.NetworkXUnfeasible(
|
||
|
"Cannot find k-factor because no perfect matching exists"
|
||
|
)
|
||
|
|
||
|
for edge in g.edges():
|
||
|
if edge not in matching and (edge[1], edge[0]) not in matching:
|
||
|
g.remove_edge(edge[0], edge[1])
|
||
|
|
||
|
for gadget in gadgets:
|
||
|
gadget.restore_node()
|
||
|
|
||
|
return g
|