1185 lines
39 KiB
Python
1185 lines
39 KiB
Python
|
"""Functions to convert NetworkX graphs to and from common data containers
|
||
|
like numpy arrays, scipy sparse arrays, and pandas DataFrames.
|
||
|
|
||
|
The preferred way of converting data to a NetworkX graph is through the
|
||
|
graph constructor. The constructor calls the `~networkx.convert.to_networkx_graph`
|
||
|
function which attempts to guess the input type and convert it automatically.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
Create a 10 node random graph from a numpy array
|
||
|
|
||
|
>>> import numpy as np
|
||
|
>>> rng = np.random.default_rng()
|
||
|
>>> a = rng.integers(low=0, high=2, size=(10, 10))
|
||
|
>>> DG = nx.from_numpy_array(a, create_using=nx.DiGraph)
|
||
|
|
||
|
or equivalently:
|
||
|
|
||
|
>>> DG = nx.DiGraph(a)
|
||
|
|
||
|
which calls `from_numpy_array` internally based on the type of ``a``.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
nx_agraph, nx_pydot
|
||
|
"""
|
||
|
|
||
|
import itertools
|
||
|
from collections import defaultdict
|
||
|
|
||
|
import networkx as nx
|
||
|
from networkx.utils import not_implemented_for
|
||
|
|
||
|
__all__ = [
|
||
|
"from_pandas_adjacency",
|
||
|
"to_pandas_adjacency",
|
||
|
"from_pandas_edgelist",
|
||
|
"to_pandas_edgelist",
|
||
|
"from_scipy_sparse_array",
|
||
|
"to_scipy_sparse_array",
|
||
|
"from_numpy_array",
|
||
|
"to_numpy_array",
|
||
|
]
|
||
|
|
||
|
|
||
|
@nx._dispatch(edge_attrs="weight")
|
||
|
def to_pandas_adjacency(
|
||
|
G,
|
||
|
nodelist=None,
|
||
|
dtype=None,
|
||
|
order=None,
|
||
|
multigraph_weight=sum,
|
||
|
weight="weight",
|
||
|
nonedge=0.0,
|
||
|
):
|
||
|
"""Returns the graph adjacency matrix as a Pandas DataFrame.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
G : graph
|
||
|
The NetworkX graph used to construct the Pandas DataFrame.
|
||
|
|
||
|
nodelist : list, optional
|
||
|
The rows and columns are ordered according to the nodes in `nodelist`.
|
||
|
If `nodelist` is None, then the ordering is produced by G.nodes().
|
||
|
|
||
|
multigraph_weight : {sum, min, max}, optional
|
||
|
An operator that determines how weights in multigraphs are handled.
|
||
|
The default is to sum the weights of the multiple edges.
|
||
|
|
||
|
weight : string or None, optional
|
||
|
The edge attribute that holds the numerical value used for
|
||
|
the edge weight. If an edge does not have that attribute, then the
|
||
|
value 1 is used instead.
|
||
|
|
||
|
nonedge : float, optional
|
||
|
The matrix values corresponding to nonedges are typically set to zero.
|
||
|
However, this could be undesirable if there are matrix values
|
||
|
corresponding to actual edges that also have the value zero. If so,
|
||
|
one might prefer nonedges to have some other value, such as nan.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
df : Pandas DataFrame
|
||
|
Graph adjacency matrix
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
For directed graphs, entry i,j corresponds to an edge from i to j.
|
||
|
|
||
|
The DataFrame entries are assigned to the weight edge attribute. When
|
||
|
an edge does not have a weight attribute, the value of the entry is set to
|
||
|
the number 1. For multiple (parallel) edges, the values of the entries
|
||
|
are determined by the 'multigraph_weight' parameter. The default is to
|
||
|
sum the weight attributes for each of the parallel edges.
|
||
|
|
||
|
When `nodelist` does not contain every node in `G`, the matrix is built
|
||
|
from the subgraph of `G` that is induced by the nodes in `nodelist`.
|
||
|
|
||
|
The convention used for self-loop edges in graphs is to assign the
|
||
|
diagonal matrix entry value to the weight attribute of the edge
|
||
|
(or the number 1 if the edge has no weight attribute). If the
|
||
|
alternate convention of doubling the edge weight is desired the
|
||
|
resulting Pandas DataFrame can be modified as follows:
|
||
|
|
||
|
>>> import pandas as pd
|
||
|
>>> pd.options.display.max_columns = 20
|
||
|
>>> import numpy as np
|
||
|
>>> G = nx.Graph([(1, 1)])
|
||
|
>>> df = nx.to_pandas_adjacency(G, dtype=int)
|
||
|
>>> df
|
||
|
1
|
||
|
1 1
|
||
|
>>> df.values[np.diag_indices_from(df)] *= 2
|
||
|
>>> df
|
||
|
1
|
||
|
1 2
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> G = nx.MultiDiGraph()
|
||
|
>>> G.add_edge(0, 1, weight=2)
|
||
|
0
|
||
|
>>> G.add_edge(1, 0)
|
||
|
0
|
||
|
>>> G.add_edge(2, 2, weight=3)
|
||
|
0
|
||
|
>>> G.add_edge(2, 2)
|
||
|
1
|
||
|
>>> nx.to_pandas_adjacency(G, nodelist=[0, 1, 2], dtype=int)
|
||
|
0 1 2
|
||
|
0 0 2 0
|
||
|
1 1 0 0
|
||
|
2 0 0 4
|
||
|
|
||
|
"""
|
||
|
import pandas as pd
|
||
|
|
||
|
M = to_numpy_array(
|
||
|
G,
|
||
|
nodelist=nodelist,
|
||
|
dtype=dtype,
|
||
|
order=order,
|
||
|
multigraph_weight=multigraph_weight,
|
||
|
weight=weight,
|
||
|
nonedge=nonedge,
|
||
|
)
|
||
|
if nodelist is None:
|
||
|
nodelist = list(G)
|
||
|
return pd.DataFrame(data=M, index=nodelist, columns=nodelist)
|
||
|
|
||
|
|
||
|
@nx._dispatch(graphs=None)
|
||
|
def from_pandas_adjacency(df, create_using=None):
|
||
|
r"""Returns a graph from Pandas DataFrame.
|
||
|
|
||
|
The Pandas DataFrame is interpreted as an adjacency matrix for the graph.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
df : Pandas DataFrame
|
||
|
An adjacency matrix representation of a graph
|
||
|
|
||
|
create_using : NetworkX graph constructor, optional (default=nx.Graph)
|
||
|
Graph type to create. If graph instance, then cleared before populated.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
For directed graphs, explicitly mention create_using=nx.DiGraph,
|
||
|
and entry i,j of df corresponds to an edge from i to j.
|
||
|
|
||
|
If `df` has a single data type for each entry it will be converted to an
|
||
|
appropriate Python data type.
|
||
|
|
||
|
If `df` has a user-specified compound data type the names
|
||
|
of the data fields will be used as attribute keys in the resulting
|
||
|
NetworkX graph.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
to_pandas_adjacency
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
Simple integer weights on edges:
|
||
|
|
||
|
>>> import pandas as pd
|
||
|
>>> pd.options.display.max_columns = 20
|
||
|
>>> df = pd.DataFrame([[1, 1], [2, 1]])
|
||
|
>>> df
|
||
|
0 1
|
||
|
0 1 1
|
||
|
1 2 1
|
||
|
>>> G = nx.from_pandas_adjacency(df)
|
||
|
>>> G.name = "Graph from pandas adjacency matrix"
|
||
|
>>> print(G)
|
||
|
Graph named 'Graph from pandas adjacency matrix' with 2 nodes and 3 edges
|
||
|
"""
|
||
|
|
||
|
try:
|
||
|
df = df[df.index]
|
||
|
except Exception as err:
|
||
|
missing = list(set(df.index).difference(set(df.columns)))
|
||
|
msg = f"{missing} not in columns"
|
||
|
raise nx.NetworkXError("Columns must match Indices.", msg) from err
|
||
|
|
||
|
A = df.values
|
||
|
G = from_numpy_array(A, create_using=create_using)
|
||
|
|
||
|
nx.relabel.relabel_nodes(G, dict(enumerate(df.columns)), copy=False)
|
||
|
return G
|
||
|
|
||
|
|
||
|
@nx._dispatch(preserve_edge_attrs=True)
|
||
|
def to_pandas_edgelist(
|
||
|
G,
|
||
|
source="source",
|
||
|
target="target",
|
||
|
nodelist=None,
|
||
|
dtype=None,
|
||
|
edge_key=None,
|
||
|
):
|
||
|
"""Returns the graph edge list as a Pandas DataFrame.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
G : graph
|
||
|
The NetworkX graph used to construct the Pandas DataFrame.
|
||
|
|
||
|
source : str or int, optional
|
||
|
A valid column name (string or integer) for the source nodes (for the
|
||
|
directed case).
|
||
|
|
||
|
target : str or int, optional
|
||
|
A valid column name (string or integer) for the target nodes (for the
|
||
|
directed case).
|
||
|
|
||
|
nodelist : list, optional
|
||
|
Use only nodes specified in nodelist
|
||
|
|
||
|
dtype : dtype, default None
|
||
|
Use to create the DataFrame. Data type to force.
|
||
|
Only a single dtype is allowed. If None, infer.
|
||
|
|
||
|
edge_key : str or int or None, optional (default=None)
|
||
|
A valid column name (string or integer) for the edge keys (for the
|
||
|
multigraph case). If None, edge keys are not stored in the DataFrame.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
df : Pandas DataFrame
|
||
|
Graph edge list
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> G = nx.Graph(
|
||
|
... [
|
||
|
... ("A", "B", {"cost": 1, "weight": 7}),
|
||
|
... ("C", "E", {"cost": 9, "weight": 10}),
|
||
|
... ]
|
||
|
... )
|
||
|
>>> df = nx.to_pandas_edgelist(G, nodelist=["A", "C"])
|
||
|
>>> df[["source", "target", "cost", "weight"]]
|
||
|
source target cost weight
|
||
|
0 A B 1 7
|
||
|
1 C E 9 10
|
||
|
|
||
|
>>> G = nx.MultiGraph([('A', 'B', {'cost': 1}), ('A', 'B', {'cost': 9})])
|
||
|
>>> df = nx.to_pandas_edgelist(G, nodelist=['A', 'C'], edge_key='ekey')
|
||
|
>>> df[['source', 'target', 'cost', 'ekey']]
|
||
|
source target cost ekey
|
||
|
0 A B 1 0
|
||
|
1 A B 9 1
|
||
|
|
||
|
"""
|
||
|
import pandas as pd
|
||
|
|
||
|
if nodelist is None:
|
||
|
edgelist = G.edges(data=True)
|
||
|
else:
|
||
|
edgelist = G.edges(nodelist, data=True)
|
||
|
source_nodes = [s for s, _, _ in edgelist]
|
||
|
target_nodes = [t for _, t, _ in edgelist]
|
||
|
|
||
|
all_attrs = set().union(*(d.keys() for _, _, d in edgelist))
|
||
|
if source in all_attrs:
|
||
|
raise nx.NetworkXError(f"Source name {source!r} is an edge attr name")
|
||
|
if target in all_attrs:
|
||
|
raise nx.NetworkXError(f"Target name {target!r} is an edge attr name")
|
||
|
|
||
|
nan = float("nan")
|
||
|
edge_attr = {k: [d.get(k, nan) for _, _, d in edgelist] for k in all_attrs}
|
||
|
|
||
|
if G.is_multigraph() and edge_key is not None:
|
||
|
if edge_key in all_attrs:
|
||
|
raise nx.NetworkXError(f"Edge key name {edge_key!r} is an edge attr name")
|
||
|
edge_keys = [k for _, _, k in G.edges(keys=True)]
|
||
|
edgelistdict = {source: source_nodes, target: target_nodes, edge_key: edge_keys}
|
||
|
else:
|
||
|
edgelistdict = {source: source_nodes, target: target_nodes}
|
||
|
|
||
|
edgelistdict.update(edge_attr)
|
||
|
return pd.DataFrame(edgelistdict, dtype=dtype)
|
||
|
|
||
|
|
||
|
@nx._dispatch(graphs=None)
|
||
|
def from_pandas_edgelist(
|
||
|
df,
|
||
|
source="source",
|
||
|
target="target",
|
||
|
edge_attr=None,
|
||
|
create_using=None,
|
||
|
edge_key=None,
|
||
|
):
|
||
|
"""Returns a graph from Pandas DataFrame containing an edge list.
|
||
|
|
||
|
The Pandas DataFrame should contain at least two columns of node names and
|
||
|
zero or more columns of edge attributes. Each row will be processed as one
|
||
|
edge instance.
|
||
|
|
||
|
Note: This function iterates over DataFrame.values, which is not
|
||
|
guaranteed to retain the data type across columns in the row. This is only
|
||
|
a problem if your row is entirely numeric and a mix of ints and floats. In
|
||
|
that case, all values will be returned as floats. See the
|
||
|
DataFrame.iterrows documentation for an example.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
df : Pandas DataFrame
|
||
|
An edge list representation of a graph
|
||
|
|
||
|
source : str or int
|
||
|
A valid column name (string or integer) for the source nodes (for the
|
||
|
directed case).
|
||
|
|
||
|
target : str or int
|
||
|
A valid column name (string or integer) for the target nodes (for the
|
||
|
directed case).
|
||
|
|
||
|
edge_attr : str or int, iterable, True, or None
|
||
|
A valid column name (str or int) or iterable of column names that are
|
||
|
used to retrieve items and add them to the graph as edge attributes.
|
||
|
If `True`, all of the remaining columns will be added.
|
||
|
If `None`, no edge attributes are added to the graph.
|
||
|
|
||
|
create_using : NetworkX graph constructor, optional (default=nx.Graph)
|
||
|
Graph type to create. If graph instance, then cleared before populated.
|
||
|
|
||
|
edge_key : str or None, optional (default=None)
|
||
|
A valid column name for the edge keys (for a MultiGraph). The values in
|
||
|
this column are used for the edge keys when adding edges if create_using
|
||
|
is a multigraph.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
to_pandas_edgelist
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
Simple integer weights on edges:
|
||
|
|
||
|
>>> import pandas as pd
|
||
|
>>> pd.options.display.max_columns = 20
|
||
|
>>> import numpy as np
|
||
|
>>> rng = np.random.RandomState(seed=5)
|
||
|
>>> ints = rng.randint(1, 11, size=(3, 2))
|
||
|
>>> a = ["A", "B", "C"]
|
||
|
>>> b = ["D", "A", "E"]
|
||
|
>>> df = pd.DataFrame(ints, columns=["weight", "cost"])
|
||
|
>>> df[0] = a
|
||
|
>>> df["b"] = b
|
||
|
>>> df[["weight", "cost", 0, "b"]]
|
||
|
weight cost 0 b
|
||
|
0 4 7 A D
|
||
|
1 7 1 B A
|
||
|
2 10 9 C E
|
||
|
>>> G = nx.from_pandas_edgelist(df, 0, "b", ["weight", "cost"])
|
||
|
>>> G["E"]["C"]["weight"]
|
||
|
10
|
||
|
>>> G["E"]["C"]["cost"]
|
||
|
9
|
||
|
>>> edges = pd.DataFrame(
|
||
|
... {
|
||
|
... "source": [0, 1, 2],
|
||
|
... "target": [2, 2, 3],
|
||
|
... "weight": [3, 4, 5],
|
||
|
... "color": ["red", "blue", "blue"],
|
||
|
... }
|
||
|
... )
|
||
|
>>> G = nx.from_pandas_edgelist(edges, edge_attr=True)
|
||
|
>>> G[0][2]["color"]
|
||
|
'red'
|
||
|
|
||
|
Build multigraph with custom keys:
|
||
|
|
||
|
>>> edges = pd.DataFrame(
|
||
|
... {
|
||
|
... "source": [0, 1, 2, 0],
|
||
|
... "target": [2, 2, 3, 2],
|
||
|
... "my_edge_key": ["A", "B", "C", "D"],
|
||
|
... "weight": [3, 4, 5, 6],
|
||
|
... "color": ["red", "blue", "blue", "blue"],
|
||
|
... }
|
||
|
... )
|
||
|
>>> G = nx.from_pandas_edgelist(
|
||
|
... edges,
|
||
|
... edge_key="my_edge_key",
|
||
|
... edge_attr=["weight", "color"],
|
||
|
... create_using=nx.MultiGraph(),
|
||
|
... )
|
||
|
>>> G[0][2]
|
||
|
AtlasView({'A': {'weight': 3, 'color': 'red'}, 'D': {'weight': 6, 'color': 'blue'}})
|
||
|
|
||
|
|
||
|
"""
|
||
|
g = nx.empty_graph(0, create_using)
|
||
|
|
||
|
if edge_attr is None:
|
||
|
g.add_edges_from(zip(df[source], df[target]))
|
||
|
return g
|
||
|
|
||
|
reserved_columns = [source, target]
|
||
|
|
||
|
# Additional columns requested
|
||
|
attr_col_headings = []
|
||
|
attribute_data = []
|
||
|
if edge_attr is True:
|
||
|
attr_col_headings = [c for c in df.columns if c not in reserved_columns]
|
||
|
elif isinstance(edge_attr, (list, tuple)):
|
||
|
attr_col_headings = edge_attr
|
||
|
else:
|
||
|
attr_col_headings = [edge_attr]
|
||
|
if len(attr_col_headings) == 0:
|
||
|
raise nx.NetworkXError(
|
||
|
f"Invalid edge_attr argument: No columns found with name: {attr_col_headings}"
|
||
|
)
|
||
|
|
||
|
try:
|
||
|
attribute_data = zip(*[df[col] for col in attr_col_headings])
|
||
|
except (KeyError, TypeError) as err:
|
||
|
msg = f"Invalid edge_attr argument: {edge_attr}"
|
||
|
raise nx.NetworkXError(msg) from err
|
||
|
|
||
|
if g.is_multigraph():
|
||
|
# => append the edge keys from the df to the bundled data
|
||
|
if edge_key is not None:
|
||
|
try:
|
||
|
multigraph_edge_keys = df[edge_key]
|
||
|
attribute_data = zip(attribute_data, multigraph_edge_keys)
|
||
|
except (KeyError, TypeError) as err:
|
||
|
msg = f"Invalid edge_key argument: {edge_key}"
|
||
|
raise nx.NetworkXError(msg) from err
|
||
|
|
||
|
for s, t, attrs in zip(df[source], df[target], attribute_data):
|
||
|
if edge_key is not None:
|
||
|
attrs, multigraph_edge_key = attrs
|
||
|
key = g.add_edge(s, t, key=multigraph_edge_key)
|
||
|
else:
|
||
|
key = g.add_edge(s, t)
|
||
|
|
||
|
g[s][t][key].update(zip(attr_col_headings, attrs))
|
||
|
else:
|
||
|
for s, t, attrs in zip(df[source], df[target], attribute_data):
|
||
|
g.add_edge(s, t)
|
||
|
g[s][t].update(zip(attr_col_headings, attrs))
|
||
|
|
||
|
return g
|
||
|
|
||
|
|
||
|
@nx._dispatch(edge_attrs="weight")
|
||
|
def to_scipy_sparse_array(G, nodelist=None, dtype=None, weight="weight", format="csr"):
|
||
|
"""Returns the graph adjacency matrix as a SciPy sparse array.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
G : graph
|
||
|
The NetworkX graph used to construct the sparse matrix.
|
||
|
|
||
|
nodelist : list, optional
|
||
|
The rows and columns are ordered according to the nodes in `nodelist`.
|
||
|
If `nodelist` is None, then the ordering is produced by G.nodes().
|
||
|
|
||
|
dtype : NumPy data-type, optional
|
||
|
A valid NumPy dtype used to initialize the array. If None, then the
|
||
|
NumPy default is used.
|
||
|
|
||
|
weight : string or None optional (default='weight')
|
||
|
The edge attribute that holds the numerical value used for
|
||
|
the edge weight. If None then all edge weights are 1.
|
||
|
|
||
|
format : str in {'bsr', 'csr', 'csc', 'coo', 'lil', 'dia', 'dok'}
|
||
|
The type of the matrix to be returned (default 'csr'). For
|
||
|
some algorithms different implementations of sparse matrices
|
||
|
can perform better. See [1]_ for details.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
A : SciPy sparse array
|
||
|
Graph adjacency matrix.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
For directed graphs, matrix entry i,j corresponds to an edge from i to j.
|
||
|
|
||
|
The matrix entries are populated using the edge attribute held in
|
||
|
parameter weight. When an edge does not have that attribute, the
|
||
|
value of the entry is 1.
|
||
|
|
||
|
For multiple edges the matrix values are the sums of the edge weights.
|
||
|
|
||
|
When `nodelist` does not contain every node in `G`, the adjacency matrix
|
||
|
is built from the subgraph of `G` that is induced by the nodes in
|
||
|
`nodelist`.
|
||
|
|
||
|
The convention used for self-loop edges in graphs is to assign the
|
||
|
diagonal matrix entry value to the weight attribute of the edge
|
||
|
(or the number 1 if the edge has no weight attribute). If the
|
||
|
alternate convention of doubling the edge weight is desired the
|
||
|
resulting SciPy sparse array can be modified as follows:
|
||
|
|
||
|
>>> G = nx.Graph([(1, 1)])
|
||
|
>>> A = nx.to_scipy_sparse_array(G)
|
||
|
>>> print(A.todense())
|
||
|
[[1]]
|
||
|
>>> A.setdiag(A.diagonal() * 2)
|
||
|
>>> print(A.toarray())
|
||
|
[[2]]
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> G = nx.MultiDiGraph()
|
||
|
>>> G.add_edge(0, 1, weight=2)
|
||
|
0
|
||
|
>>> G.add_edge(1, 0)
|
||
|
0
|
||
|
>>> G.add_edge(2, 2, weight=3)
|
||
|
0
|
||
|
>>> G.add_edge(2, 2)
|
||
|
1
|
||
|
>>> S = nx.to_scipy_sparse_array(G, nodelist=[0, 1, 2])
|
||
|
>>> print(S.toarray())
|
||
|
[[0 2 0]
|
||
|
[1 0 0]
|
||
|
[0 0 4]]
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] Scipy Dev. References, "Sparse Matrices",
|
||
|
https://docs.scipy.org/doc/scipy/reference/sparse.html
|
||
|
"""
|
||
|
import scipy as sp
|
||
|
|
||
|
if len(G) == 0:
|
||
|
raise nx.NetworkXError("Graph has no nodes or edges")
|
||
|
|
||
|
if nodelist is None:
|
||
|
nodelist = list(G)
|
||
|
nlen = len(G)
|
||
|
else:
|
||
|
nlen = len(nodelist)
|
||
|
if nlen == 0:
|
||
|
raise nx.NetworkXError("nodelist has no nodes")
|
||
|
nodeset = set(G.nbunch_iter(nodelist))
|
||
|
if nlen != len(nodeset):
|
||
|
for n in nodelist:
|
||
|
if n not in G:
|
||
|
raise nx.NetworkXError(f"Node {n} in nodelist is not in G")
|
||
|
raise nx.NetworkXError("nodelist contains duplicates.")
|
||
|
if nlen < len(G):
|
||
|
G = G.subgraph(nodelist)
|
||
|
|
||
|
index = dict(zip(nodelist, range(nlen)))
|
||
|
coefficients = zip(
|
||
|
*((index[u], index[v], wt) for u, v, wt in G.edges(data=weight, default=1))
|
||
|
)
|
||
|
try:
|
||
|
row, col, data = coefficients
|
||
|
except ValueError:
|
||
|
# there is no edge in the subgraph
|
||
|
row, col, data = [], [], []
|
||
|
|
||
|
if G.is_directed():
|
||
|
A = sp.sparse.coo_array((data, (row, col)), shape=(nlen, nlen), dtype=dtype)
|
||
|
else:
|
||
|
# symmetrize matrix
|
||
|
d = data + data
|
||
|
r = row + col
|
||
|
c = col + row
|
||
|
# selfloop entries get double counted when symmetrizing
|
||
|
# so we subtract the data on the diagonal
|
||
|
selfloops = list(nx.selfloop_edges(G, data=weight, default=1))
|
||
|
if selfloops:
|
||
|
diag_index, diag_data = zip(*((index[u], -wt) for u, v, wt in selfloops))
|
||
|
d += diag_data
|
||
|
r += diag_index
|
||
|
c += diag_index
|
||
|
A = sp.sparse.coo_array((d, (r, c)), shape=(nlen, nlen), dtype=dtype)
|
||
|
try:
|
||
|
return A.asformat(format)
|
||
|
except ValueError as err:
|
||
|
raise nx.NetworkXError(f"Unknown sparse matrix format: {format}") from err
|
||
|
|
||
|
|
||
|
def _csr_gen_triples(A):
|
||
|
"""Converts a SciPy sparse array in **Compressed Sparse Row** format to
|
||
|
an iterable of weighted edge triples.
|
||
|
|
||
|
"""
|
||
|
nrows = A.shape[0]
|
||
|
data, indices, indptr = A.data, A.indices, A.indptr
|
||
|
for i in range(nrows):
|
||
|
for j in range(indptr[i], indptr[i + 1]):
|
||
|
yield i, int(indices[j]), data[j]
|
||
|
|
||
|
|
||
|
def _csc_gen_triples(A):
|
||
|
"""Converts a SciPy sparse array in **Compressed Sparse Column** format to
|
||
|
an iterable of weighted edge triples.
|
||
|
|
||
|
"""
|
||
|
ncols = A.shape[1]
|
||
|
data, indices, indptr = A.data, A.indices, A.indptr
|
||
|
for i in range(ncols):
|
||
|
for j in range(indptr[i], indptr[i + 1]):
|
||
|
yield int(indices[j]), i, data[j]
|
||
|
|
||
|
|
||
|
def _coo_gen_triples(A):
|
||
|
"""Converts a SciPy sparse array in **Coordinate** format to an iterable
|
||
|
of weighted edge triples.
|
||
|
|
||
|
"""
|
||
|
return ((int(i), int(j), d) for i, j, d in zip(A.row, A.col, A.data))
|
||
|
|
||
|
|
||
|
def _dok_gen_triples(A):
|
||
|
"""Converts a SciPy sparse array in **Dictionary of Keys** format to an
|
||
|
iterable of weighted edge triples.
|
||
|
|
||
|
"""
|
||
|
for (r, c), v in A.items():
|
||
|
yield r, c, v
|
||
|
|
||
|
|
||
|
def _generate_weighted_edges(A):
|
||
|
"""Returns an iterable over (u, v, w) triples, where u and v are adjacent
|
||
|
vertices and w is the weight of the edge joining u and v.
|
||
|
|
||
|
`A` is a SciPy sparse array (in any format).
|
||
|
|
||
|
"""
|
||
|
if A.format == "csr":
|
||
|
return _csr_gen_triples(A)
|
||
|
if A.format == "csc":
|
||
|
return _csc_gen_triples(A)
|
||
|
if A.format == "dok":
|
||
|
return _dok_gen_triples(A)
|
||
|
# If A is in any other format (including COO), convert it to COO format.
|
||
|
return _coo_gen_triples(A.tocoo())
|
||
|
|
||
|
|
||
|
@nx._dispatch(graphs=None)
|
||
|
def from_scipy_sparse_array(
|
||
|
A, parallel_edges=False, create_using=None, edge_attribute="weight"
|
||
|
):
|
||
|
"""Creates a new graph from an adjacency matrix given as a SciPy sparse
|
||
|
array.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
A: scipy.sparse array
|
||
|
An adjacency matrix representation of a graph
|
||
|
|
||
|
parallel_edges : Boolean
|
||
|
If this is True, `create_using` is a multigraph, and `A` is an
|
||
|
integer matrix, then entry *(i, j)* in the matrix is interpreted as the
|
||
|
number of parallel edges joining vertices *i* and *j* in the graph.
|
||
|
If it is False, then the entries in the matrix are interpreted as
|
||
|
the weight of a single edge joining the vertices.
|
||
|
|
||
|
create_using : NetworkX graph constructor, optional (default=nx.Graph)
|
||
|
Graph type to create. If graph instance, then cleared before populated.
|
||
|
|
||
|
edge_attribute: string
|
||
|
Name of edge attribute to store matrix numeric value. The data will
|
||
|
have the same type as the matrix entry (int, float, (real,imag)).
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
For directed graphs, explicitly mention create_using=nx.DiGraph,
|
||
|
and entry i,j of A corresponds to an edge from i to j.
|
||
|
|
||
|
If `create_using` is :class:`networkx.MultiGraph` or
|
||
|
:class:`networkx.MultiDiGraph`, `parallel_edges` is True, and the
|
||
|
entries of `A` are of type :class:`int`, then this function returns a
|
||
|
multigraph (constructed from `create_using`) with parallel edges.
|
||
|
In this case, `edge_attribute` will be ignored.
|
||
|
|
||
|
If `create_using` indicates an undirected multigraph, then only the edges
|
||
|
indicated by the upper triangle of the matrix `A` will be added to the
|
||
|
graph.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> import scipy as sp
|
||
|
>>> A = sp.sparse.eye(2, 2, 1)
|
||
|
>>> G = nx.from_scipy_sparse_array(A)
|
||
|
|
||
|
If `create_using` indicates a multigraph and the matrix has only integer
|
||
|
entries and `parallel_edges` is False, then the entries will be treated
|
||
|
as weights for edges joining the nodes (without creating parallel edges):
|
||
|
|
||
|
>>> A = sp.sparse.csr_array([[1, 1], [1, 2]])
|
||
|
>>> G = nx.from_scipy_sparse_array(A, create_using=nx.MultiGraph)
|
||
|
>>> G[1][1]
|
||
|
AtlasView({0: {'weight': 2}})
|
||
|
|
||
|
If `create_using` indicates a multigraph and the matrix has only integer
|
||
|
entries and `parallel_edges` is True, then the entries will be treated
|
||
|
as the number of parallel edges joining those two vertices:
|
||
|
|
||
|
>>> A = sp.sparse.csr_array([[1, 1], [1, 2]])
|
||
|
>>> G = nx.from_scipy_sparse_array(
|
||
|
... A, parallel_edges=True, create_using=nx.MultiGraph
|
||
|
... )
|
||
|
>>> G[1][1]
|
||
|
AtlasView({0: {'weight': 1}, 1: {'weight': 1}})
|
||
|
|
||
|
"""
|
||
|
G = nx.empty_graph(0, create_using)
|
||
|
n, m = A.shape
|
||
|
if n != m:
|
||
|
raise nx.NetworkXError(f"Adjacency matrix not square: nx,ny={A.shape}")
|
||
|
# Make sure we get even the isolated nodes of the graph.
|
||
|
G.add_nodes_from(range(n))
|
||
|
# Create an iterable over (u, v, w) triples and for each triple, add an
|
||
|
# edge from u to v with weight w.
|
||
|
triples = _generate_weighted_edges(A)
|
||
|
# If the entries in the adjacency matrix are integers, the graph is a
|
||
|
# multigraph, and parallel_edges is True, then create parallel edges, each
|
||
|
# with weight 1, for each entry in the adjacency matrix. Otherwise, create
|
||
|
# one edge for each positive entry in the adjacency matrix and set the
|
||
|
# weight of that edge to be the entry in the matrix.
|
||
|
if A.dtype.kind in ("i", "u") and G.is_multigraph() and parallel_edges:
|
||
|
chain = itertools.chain.from_iterable
|
||
|
# The following line is equivalent to:
|
||
|
#
|
||
|
# for (u, v) in edges:
|
||
|
# for d in range(A[u, v]):
|
||
|
# G.add_edge(u, v, weight=1)
|
||
|
#
|
||
|
triples = chain(((u, v, 1) for d in range(w)) for (u, v, w) in triples)
|
||
|
# If we are creating an undirected multigraph, only add the edges from the
|
||
|
# upper triangle of the matrix. Otherwise, add all the edges. This relies
|
||
|
# on the fact that the vertices created in the
|
||
|
# `_generated_weighted_edges()` function are actually the row/column
|
||
|
# indices for the matrix `A`.
|
||
|
#
|
||
|
# Without this check, we run into a problem where each edge is added twice
|
||
|
# when `G.add_weighted_edges_from()` is invoked below.
|
||
|
if G.is_multigraph() and not G.is_directed():
|
||
|
triples = ((u, v, d) for u, v, d in triples if u <= v)
|
||
|
G.add_weighted_edges_from(triples, weight=edge_attribute)
|
||
|
return G
|
||
|
|
||
|
|
||
|
@nx._dispatch(edge_attrs="weight") # edge attrs may also be obtained from `dtype`
|
||
|
def to_numpy_array(
|
||
|
G,
|
||
|
nodelist=None,
|
||
|
dtype=None,
|
||
|
order=None,
|
||
|
multigraph_weight=sum,
|
||
|
weight="weight",
|
||
|
nonedge=0.0,
|
||
|
):
|
||
|
"""Returns the graph adjacency matrix as a NumPy array.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
G : graph
|
||
|
The NetworkX graph used to construct the NumPy array.
|
||
|
|
||
|
nodelist : list, optional
|
||
|
The rows and columns are ordered according to the nodes in `nodelist`.
|
||
|
If `nodelist` is ``None``, then the ordering is produced by ``G.nodes()``.
|
||
|
|
||
|
dtype : NumPy data type, optional
|
||
|
A NumPy data type used to initialize the array. If None, then the NumPy
|
||
|
default is used. The dtype can be structured if `weight=None`, in which
|
||
|
case the dtype field names are used to look up edge attributes. The
|
||
|
result is a structured array where each named field in the dtype
|
||
|
corresponds to the adjacency for that edge attribute. See examples for
|
||
|
details.
|
||
|
|
||
|
order : {'C', 'F'}, optional
|
||
|
Whether to store multidimensional data in C- or Fortran-contiguous
|
||
|
(row- or column-wise) order in memory. If None, then the NumPy default
|
||
|
is used.
|
||
|
|
||
|
multigraph_weight : callable, optional
|
||
|
An function that determines how weights in multigraphs are handled.
|
||
|
The function should accept a sequence of weights and return a single
|
||
|
value. The default is to sum the weights of the multiple edges.
|
||
|
|
||
|
weight : string or None optional (default = 'weight')
|
||
|
The edge attribute that holds the numerical value used for
|
||
|
the edge weight. If an edge does not have that attribute, then the
|
||
|
value 1 is used instead. `weight` must be ``None`` if a structured
|
||
|
dtype is used.
|
||
|
|
||
|
nonedge : array_like (default = 0.0)
|
||
|
The value used to represent non-edges in the adjacency matrix.
|
||
|
The array values corresponding to nonedges are typically set to zero.
|
||
|
However, this could be undesirable if there are array values
|
||
|
corresponding to actual edges that also have the value zero. If so,
|
||
|
one might prefer nonedges to have some other value, such as ``nan``.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
A : NumPy ndarray
|
||
|
Graph adjacency matrix
|
||
|
|
||
|
Raises
|
||
|
------
|
||
|
NetworkXError
|
||
|
If `dtype` is a structured dtype and `G` is a multigraph
|
||
|
ValueError
|
||
|
If `dtype` is a structured dtype and `weight` is not `None`
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
from_numpy_array
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
For directed graphs, entry ``i, j`` corresponds to an edge from ``i`` to ``j``.
|
||
|
|
||
|
Entries in the adjacency matrix are given by the `weight` edge attribute.
|
||
|
When an edge does not have a weight attribute, the value of the entry is
|
||
|
set to the number 1. For multiple (parallel) edges, the values of the
|
||
|
entries are determined by the `multigraph_weight` parameter. The default is
|
||
|
to sum the weight attributes for each of the parallel edges.
|
||
|
|
||
|
When `nodelist` does not contain every node in `G`, the adjacency matrix is
|
||
|
built from the subgraph of `G` that is induced by the nodes in `nodelist`.
|
||
|
|
||
|
The convention used for self-loop edges in graphs is to assign the
|
||
|
diagonal array entry value to the weight attribute of the edge
|
||
|
(or the number 1 if the edge has no weight attribute). If the
|
||
|
alternate convention of doubling the edge weight is desired the
|
||
|
resulting NumPy array can be modified as follows:
|
||
|
|
||
|
>>> import numpy as np
|
||
|
>>> G = nx.Graph([(1, 1)])
|
||
|
>>> A = nx.to_numpy_array(G)
|
||
|
>>> A
|
||
|
array([[1.]])
|
||
|
>>> A[np.diag_indices_from(A)] *= 2
|
||
|
>>> A
|
||
|
array([[2.]])
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> G = nx.MultiDiGraph()
|
||
|
>>> G.add_edge(0, 1, weight=2)
|
||
|
0
|
||
|
>>> G.add_edge(1, 0)
|
||
|
0
|
||
|
>>> G.add_edge(2, 2, weight=3)
|
||
|
0
|
||
|
>>> G.add_edge(2, 2)
|
||
|
1
|
||
|
>>> nx.to_numpy_array(G, nodelist=[0, 1, 2])
|
||
|
array([[0., 2., 0.],
|
||
|
[1., 0., 0.],
|
||
|
[0., 0., 4.]])
|
||
|
|
||
|
When `nodelist` argument is used, nodes of `G` which do not appear in the `nodelist`
|
||
|
and their edges are not included in the adjacency matrix. Here is an example:
|
||
|
|
||
|
>>> G = nx.Graph()
|
||
|
>>> G.add_edge(3, 1)
|
||
|
>>> G.add_edge(2, 0)
|
||
|
>>> G.add_edge(2, 1)
|
||
|
>>> G.add_edge(3, 0)
|
||
|
>>> nx.to_numpy_array(G, nodelist=[1, 2, 3])
|
||
|
array([[0., 1., 1.],
|
||
|
[1., 0., 0.],
|
||
|
[1., 0., 0.]])
|
||
|
|
||
|
This function can also be used to create adjacency matrices for multiple
|
||
|
edge attributes with structured dtypes:
|
||
|
|
||
|
>>> G = nx.Graph()
|
||
|
>>> G.add_edge(0, 1, weight=10)
|
||
|
>>> G.add_edge(1, 2, cost=5)
|
||
|
>>> G.add_edge(2, 3, weight=3, cost=-4.0)
|
||
|
>>> dtype = np.dtype([("weight", int), ("cost", float)])
|
||
|
>>> A = nx.to_numpy_array(G, dtype=dtype, weight=None)
|
||
|
>>> A["weight"]
|
||
|
array([[ 0, 10, 0, 0],
|
||
|
[10, 0, 1, 0],
|
||
|
[ 0, 1, 0, 3],
|
||
|
[ 0, 0, 3, 0]])
|
||
|
>>> A["cost"]
|
||
|
array([[ 0., 1., 0., 0.],
|
||
|
[ 1., 0., 5., 0.],
|
||
|
[ 0., 5., 0., -4.],
|
||
|
[ 0., 0., -4., 0.]])
|
||
|
|
||
|
As stated above, the argument "nonedge" is useful especially when there are
|
||
|
actually edges with weight 0 in the graph. Setting a nonedge value different than 0,
|
||
|
makes it much clearer to differentiate such 0-weighted edges and actual nonedge values.
|
||
|
|
||
|
>>> G = nx.Graph()
|
||
|
>>> G.add_edge(3, 1, weight=2)
|
||
|
>>> G.add_edge(2, 0, weight=0)
|
||
|
>>> G.add_edge(2, 1, weight=0)
|
||
|
>>> G.add_edge(3, 0, weight=1)
|
||
|
>>> nx.to_numpy_array(G, nonedge=-1.)
|
||
|
array([[-1., 2., -1., 1.],
|
||
|
[ 2., -1., 0., -1.],
|
||
|
[-1., 0., -1., 0.],
|
||
|
[ 1., -1., 0., -1.]])
|
||
|
"""
|
||
|
import numpy as np
|
||
|
|
||
|
if nodelist is None:
|
||
|
nodelist = list(G)
|
||
|
nlen = len(nodelist)
|
||
|
|
||
|
# Input validation
|
||
|
nodeset = set(nodelist)
|
||
|
if nodeset - set(G):
|
||
|
raise nx.NetworkXError(f"Nodes {nodeset - set(G)} in nodelist is not in G")
|
||
|
if len(nodeset) < nlen:
|
||
|
raise nx.NetworkXError("nodelist contains duplicates.")
|
||
|
|
||
|
A = np.full((nlen, nlen), fill_value=nonedge, dtype=dtype, order=order)
|
||
|
|
||
|
# Corner cases: empty nodelist or graph without any edges
|
||
|
if nlen == 0 or G.number_of_edges() == 0:
|
||
|
return A
|
||
|
|
||
|
# If dtype is structured and weight is None, use dtype field names as
|
||
|
# edge attributes
|
||
|
edge_attrs = None # Only single edge attribute by default
|
||
|
if A.dtype.names:
|
||
|
if weight is None:
|
||
|
edge_attrs = dtype.names
|
||
|
else:
|
||
|
raise ValueError(
|
||
|
"Specifying `weight` not supported for structured dtypes\n."
|
||
|
"To create adjacency matrices from structured dtypes, use `weight=None`."
|
||
|
)
|
||
|
|
||
|
# Map nodes to row/col in matrix
|
||
|
idx = dict(zip(nodelist, range(nlen)))
|
||
|
if len(nodelist) < len(G):
|
||
|
G = G.subgraph(nodelist).copy()
|
||
|
|
||
|
# Collect all edge weights and reduce with `multigraph_weights`
|
||
|
if G.is_multigraph():
|
||
|
if edge_attrs:
|
||
|
raise nx.NetworkXError(
|
||
|
"Structured arrays are not supported for MultiGraphs"
|
||
|
)
|
||
|
d = defaultdict(list)
|
||
|
for u, v, wt in G.edges(data=weight, default=1.0):
|
||
|
d[(idx[u], idx[v])].append(wt)
|
||
|
i, j = np.array(list(d.keys())).T # indices
|
||
|
wts = [multigraph_weight(ws) for ws in d.values()] # reduced weights
|
||
|
else:
|
||
|
i, j, wts = [], [], []
|
||
|
|
||
|
# Special branch: multi-attr adjacency from structured dtypes
|
||
|
if edge_attrs:
|
||
|
# Extract edges with all data
|
||
|
for u, v, data in G.edges(data=True):
|
||
|
i.append(idx[u])
|
||
|
j.append(idx[v])
|
||
|
wts.append(data)
|
||
|
# Map each attribute to the appropriate named field in the
|
||
|
# structured dtype
|
||
|
for attr in edge_attrs:
|
||
|
attr_data = [wt.get(attr, 1.0) for wt in wts]
|
||
|
A[attr][i, j] = attr_data
|
||
|
if not G.is_directed():
|
||
|
A[attr][j, i] = attr_data
|
||
|
return A
|
||
|
|
||
|
for u, v, wt in G.edges(data=weight, default=1.0):
|
||
|
i.append(idx[u])
|
||
|
j.append(idx[v])
|
||
|
wts.append(wt)
|
||
|
|
||
|
# Set array values with advanced indexing
|
||
|
A[i, j] = wts
|
||
|
if not G.is_directed():
|
||
|
A[j, i] = wts
|
||
|
|
||
|
return A
|
||
|
|
||
|
|
||
|
@nx._dispatch(graphs=None)
|
||
|
def from_numpy_array(A, parallel_edges=False, create_using=None, edge_attr="weight"):
|
||
|
"""Returns a graph from a 2D NumPy array.
|
||
|
|
||
|
The 2D NumPy array is interpreted as an adjacency matrix for the graph.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
A : a 2D numpy.ndarray
|
||
|
An adjacency matrix representation of a graph
|
||
|
|
||
|
parallel_edges : Boolean
|
||
|
If this is True, `create_using` is a multigraph, and `A` is an
|
||
|
integer array, then entry *(i, j)* in the array is interpreted as the
|
||
|
number of parallel edges joining vertices *i* and *j* in the graph.
|
||
|
If it is False, then the entries in the array are interpreted as
|
||
|
the weight of a single edge joining the vertices.
|
||
|
|
||
|
create_using : NetworkX graph constructor, optional (default=nx.Graph)
|
||
|
Graph type to create. If graph instance, then cleared before populated.
|
||
|
|
||
|
edge_attr : String, optional (default="weight")
|
||
|
The attribute to which the array values are assigned on each edge. If
|
||
|
it is None, edge attributes will not be assigned.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
For directed graphs, explicitly mention create_using=nx.DiGraph,
|
||
|
and entry i,j of A corresponds to an edge from i to j.
|
||
|
|
||
|
If `create_using` is :class:`networkx.MultiGraph` or
|
||
|
:class:`networkx.MultiDiGraph`, `parallel_edges` is True, and the
|
||
|
entries of `A` are of type :class:`int`, then this function returns a
|
||
|
multigraph (of the same type as `create_using`) with parallel edges.
|
||
|
|
||
|
If `create_using` indicates an undirected multigraph, then only the edges
|
||
|
indicated by the upper triangle of the array `A` will be added to the
|
||
|
graph.
|
||
|
|
||
|
If `edge_attr` is Falsy (False or None), edge attributes will not be
|
||
|
assigned, and the array data will be treated like a binary mask of
|
||
|
edge presence or absence. Otherwise, the attributes will be assigned
|
||
|
as follows:
|
||
|
|
||
|
If the NumPy array has a single data type for each array entry it
|
||
|
will be converted to an appropriate Python data type.
|
||
|
|
||
|
If the NumPy array has a user-specified compound data type the names
|
||
|
of the data fields will be used as attribute keys in the resulting
|
||
|
NetworkX graph.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
to_numpy_array
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
Simple integer weights on edges:
|
||
|
|
||
|
>>> import numpy as np
|
||
|
>>> A = np.array([[1, 1], [2, 1]])
|
||
|
>>> G = nx.from_numpy_array(A)
|
||
|
>>> G.edges(data=True)
|
||
|
EdgeDataView([(0, 0, {'weight': 1}), (0, 1, {'weight': 2}), (1, 1, {'weight': 1})])
|
||
|
|
||
|
If `create_using` indicates a multigraph and the array has only integer
|
||
|
entries and `parallel_edges` is False, then the entries will be treated
|
||
|
as weights for edges joining the nodes (without creating parallel edges):
|
||
|
|
||
|
>>> A = np.array([[1, 1], [1, 2]])
|
||
|
>>> G = nx.from_numpy_array(A, create_using=nx.MultiGraph)
|
||
|
>>> G[1][1]
|
||
|
AtlasView({0: {'weight': 2}})
|
||
|
|
||
|
If `create_using` indicates a multigraph and the array has only integer
|
||
|
entries and `parallel_edges` is True, then the entries will be treated
|
||
|
as the number of parallel edges joining those two vertices:
|
||
|
|
||
|
>>> A = np.array([[1, 1], [1, 2]])
|
||
|
>>> temp = nx.MultiGraph()
|
||
|
>>> G = nx.from_numpy_array(A, parallel_edges=True, create_using=temp)
|
||
|
>>> G[1][1]
|
||
|
AtlasView({0: {'weight': 1}, 1: {'weight': 1}})
|
||
|
|
||
|
User defined compound data type on edges:
|
||
|
|
||
|
>>> dt = [("weight", float), ("cost", int)]
|
||
|
>>> A = np.array([[(1.0, 2)]], dtype=dt)
|
||
|
>>> G = nx.from_numpy_array(A)
|
||
|
>>> G.edges()
|
||
|
EdgeView([(0, 0)])
|
||
|
>>> G[0][0]["cost"]
|
||
|
2
|
||
|
>>> G[0][0]["weight"]
|
||
|
1.0
|
||
|
|
||
|
"""
|
||
|
kind_to_python_type = {
|
||
|
"f": float,
|
||
|
"i": int,
|
||
|
"u": int,
|
||
|
"b": bool,
|
||
|
"c": complex,
|
||
|
"S": str,
|
||
|
"U": str,
|
||
|
"V": "void",
|
||
|
}
|
||
|
G = nx.empty_graph(0, create_using)
|
||
|
if A.ndim != 2:
|
||
|
raise nx.NetworkXError(f"Input array must be 2D, not {A.ndim}")
|
||
|
n, m = A.shape
|
||
|
if n != m:
|
||
|
raise nx.NetworkXError(f"Adjacency matrix not square: nx,ny={A.shape}")
|
||
|
dt = A.dtype
|
||
|
try:
|
||
|
python_type = kind_to_python_type[dt.kind]
|
||
|
except Exception as err:
|
||
|
raise TypeError(f"Unknown numpy data type: {dt}") from err
|
||
|
|
||
|
# Make sure we get even the isolated nodes of the graph.
|
||
|
G.add_nodes_from(range(n))
|
||
|
# Get a list of all the entries in the array with nonzero entries. These
|
||
|
# coordinates become edges in the graph. (convert to int from np.int64)
|
||
|
edges = ((int(e[0]), int(e[1])) for e in zip(*A.nonzero()))
|
||
|
# handle numpy constructed data type
|
||
|
if python_type == "void":
|
||
|
# Sort the fields by their offset, then by dtype, then by name.
|
||
|
fields = sorted(
|
||
|
(offset, dtype, name) for name, (dtype, offset) in A.dtype.fields.items()
|
||
|
)
|
||
|
triples = (
|
||
|
(
|
||
|
u,
|
||
|
v,
|
||
|
{
|
||
|
name: kind_to_python_type[dtype.kind](val)
|
||
|
for (_, dtype, name), val in zip(fields, A[u, v])
|
||
|
}
|
||
|
if edge_attr
|
||
|
else {},
|
||
|
)
|
||
|
for u, v in edges
|
||
|
)
|
||
|
# If the entries in the adjacency matrix are integers, the graph is a
|
||
|
# multigraph, and parallel_edges is True, then create parallel edges, each
|
||
|
# with weight 1, for each entry in the adjacency matrix. Otherwise, create
|
||
|
# one edge for each positive entry in the adjacency matrix and set the
|
||
|
# weight of that edge to be the entry in the matrix.
|
||
|
elif python_type is int and G.is_multigraph() and parallel_edges:
|
||
|
chain = itertools.chain.from_iterable
|
||
|
# The following line is equivalent to:
|
||
|
#
|
||
|
# for (u, v) in edges:
|
||
|
# for d in range(A[u, v]):
|
||
|
# G.add_edge(u, v, weight=1)
|
||
|
#
|
||
|
if edge_attr:
|
||
|
triples = chain(
|
||
|
((u, v, {edge_attr: 1}) for d in range(A[u, v])) for (u, v) in edges
|
||
|
)
|
||
|
else:
|
||
|
triples = chain(((u, v, {}) for d in range(A[u, v])) for (u, v) in edges)
|
||
|
else: # basic data type
|
||
|
if edge_attr:
|
||
|
triples = ((u, v, {edge_attr: python_type(A[u, v])}) for u, v in edges)
|
||
|
else:
|
||
|
triples = ((u, v, {}) for u, v in edges)
|
||
|
# If we are creating an undirected multigraph, only add the edges from the
|
||
|
# upper triangle of the matrix. Otherwise, add all the edges. This relies
|
||
|
# on the fact that the vertices created in the
|
||
|
# `_generated_weighted_edges()` function are actually the row/column
|
||
|
# indices for the matrix `A`.
|
||
|
#
|
||
|
# Without this check, we run into a problem where each edge is added twice
|
||
|
# when `G.add_edges_from()` is invoked below.
|
||
|
if G.is_multigraph() and not G.is_directed():
|
||
|
triples = ((u, v, d) for u, v, d in triples if u <= v)
|
||
|
G.add_edges_from(triples)
|
||
|
return G
|