wg-backend-django/dell-env/lib/python3.11/site-packages/networkx/drawing/nx_pylab.py

1595 lines
50 KiB
Python
Raw Normal View History

2023-10-30 03:40:43 -04:00
"""
**********
Matplotlib
**********
Draw networks with matplotlib.
Examples
--------
>>> G = nx.complete_graph(5)
>>> nx.draw(G)
See Also
--------
- :doc:`matplotlib <matplotlib:index>`
- :func:`matplotlib.pyplot.scatter`
- :obj:`matplotlib.patches.FancyArrowPatch`
"""
from numbers import Number
import networkx as nx
from networkx.drawing.layout import (
circular_layout,
kamada_kawai_layout,
planar_layout,
random_layout,
shell_layout,
spectral_layout,
spring_layout,
)
__all__ = [
"draw",
"draw_networkx",
"draw_networkx_nodes",
"draw_networkx_edges",
"draw_networkx_labels",
"draw_networkx_edge_labels",
"draw_circular",
"draw_kamada_kawai",
"draw_random",
"draw_spectral",
"draw_spring",
"draw_planar",
"draw_shell",
]
def draw(G, pos=None, ax=None, **kwds):
"""Draw the graph G with Matplotlib.
Draw the graph as a simple representation with no node
labels or edge labels and using the full Matplotlib figure area
and no axis labels by default. See draw_networkx() for more
full-featured drawing that allows title, axis labels etc.
Parameters
----------
G : graph
A networkx graph
pos : dictionary, optional
A dictionary with nodes as keys and positions as values.
If not specified a spring layout positioning will be computed.
See :py:mod:`networkx.drawing.layout` for functions that
compute node positions.
ax : Matplotlib Axes object, optional
Draw the graph in specified Matplotlib axes.
kwds : optional keywords
See networkx.draw_networkx() for a description of optional keywords.
Examples
--------
>>> G = nx.dodecahedral_graph()
>>> nx.draw(G)
>>> nx.draw(G, pos=nx.spring_layout(G)) # use spring layout
See Also
--------
draw_networkx
draw_networkx_nodes
draw_networkx_edges
draw_networkx_labels
draw_networkx_edge_labels
Notes
-----
This function has the same name as pylab.draw and pyplot.draw
so beware when using `from networkx import *`
since you might overwrite the pylab.draw function.
With pyplot use
>>> import matplotlib.pyplot as plt
>>> G = nx.dodecahedral_graph()
>>> nx.draw(G) # networkx draw()
>>> plt.draw() # pyplot draw()
Also see the NetworkX drawing examples at
https://networkx.org/documentation/latest/auto_examples/index.html
"""
import matplotlib.pyplot as plt
if ax is None:
cf = plt.gcf()
else:
cf = ax.get_figure()
cf.set_facecolor("w")
if ax is None:
if cf.axes:
ax = cf.gca()
else:
ax = cf.add_axes((0, 0, 1, 1))
if "with_labels" not in kwds:
kwds["with_labels"] = "labels" in kwds
draw_networkx(G, pos=pos, ax=ax, **kwds)
ax.set_axis_off()
plt.draw_if_interactive()
return
def draw_networkx(G, pos=None, arrows=None, with_labels=True, **kwds):
r"""Draw the graph G using Matplotlib.
Draw the graph with Matplotlib with options for node positions,
labeling, titles, and many other drawing features.
See draw() for simple drawing without labels or axes.
Parameters
----------
G : graph
A networkx graph
pos : dictionary, optional
A dictionary with nodes as keys and positions as values.
If not specified a spring layout positioning will be computed.
See :py:mod:`networkx.drawing.layout` for functions that
compute node positions.
arrows : bool or None, optional (default=None)
If `None`, directed graphs draw arrowheads with
`~matplotlib.patches.FancyArrowPatch`, while undirected graphs draw edges
via `~matplotlib.collections.LineCollection` for speed.
If `True`, draw arrowheads with FancyArrowPatches (bendable and stylish).
If `False`, draw edges using LineCollection (linear and fast).
For directed graphs, if True draw arrowheads.
Note: Arrows will be the same color as edges.
arrowstyle : str (default='-\|>' for directed graphs)
For directed graphs, choose the style of the arrowsheads.
For undirected graphs default to '-'
See `matplotlib.patches.ArrowStyle` for more options.
arrowsize : int or list (default=10)
For directed graphs, choose the size of the arrow head's length and
width. A list of values can be passed in to assign a different size for arrow head's length and width.
See `matplotlib.patches.FancyArrowPatch` for attribute `mutation_scale`
for more info.
with_labels : bool (default=True)
Set to True to draw labels on the nodes.
ax : Matplotlib Axes object, optional
Draw the graph in the specified Matplotlib axes.
nodelist : list (default=list(G))
Draw only specified nodes
edgelist : list (default=list(G.edges()))
Draw only specified edges
node_size : scalar or array (default=300)
Size of nodes. If an array is specified it must be the
same length as nodelist.
node_color : color or array of colors (default='#1f78b4')
Node color. Can be a single color or a sequence of colors with the same
length as nodelist. Color can be string or rgb (or rgba) tuple of
floats from 0-1. If numeric values are specified they will be
mapped to colors using the cmap and vmin,vmax parameters. See
matplotlib.scatter for more details.
node_shape : string (default='o')
The shape of the node. Specification is as matplotlib.scatter
marker, one of 'so^>v<dph8'.
alpha : float or None (default=None)
The node and edge transparency
cmap : Matplotlib colormap, optional
Colormap for mapping intensities of nodes
vmin,vmax : float, optional
Minimum and maximum for node colormap scaling
linewidths : scalar or sequence (default=1.0)
Line width of symbol border
width : float or array of floats (default=1.0)
Line width of edges
edge_color : color or array of colors (default='k')
Edge color. Can be a single color or a sequence of colors with the same
length as edgelist. Color can be string or rgb (or rgba) tuple of
floats from 0-1. If numeric values are specified they will be
mapped to colors using the edge_cmap and edge_vmin,edge_vmax parameters.
edge_cmap : Matplotlib colormap, optional
Colormap for mapping intensities of edges
edge_vmin,edge_vmax : floats, optional
Minimum and maximum for edge colormap scaling
style : string (default=solid line)
Edge line style e.g.: '-', '--', '-.', ':'
or words like 'solid' or 'dashed'.
(See `matplotlib.patches.FancyArrowPatch`: `linestyle`)
labels : dictionary (default=None)
Node labels in a dictionary of text labels keyed by node
font_size : int (default=12 for nodes, 10 for edges)
Font size for text labels
font_color : color (default='k' black)
Font color string. Color can be string or rgb (or rgba) tuple of
floats from 0-1.
font_weight : string (default='normal')
Font weight
font_family : string (default='sans-serif')
Font family
label : string, optional
Label for graph legend
kwds : optional keywords
See networkx.draw_networkx_nodes(), networkx.draw_networkx_edges(), and
networkx.draw_networkx_labels() for a description of optional keywords.
Notes
-----
For directed graphs, arrows are drawn at the head end. Arrows can be
turned off with keyword arrows=False.
Examples
--------
>>> G = nx.dodecahedral_graph()
>>> nx.draw(G)
>>> nx.draw(G, pos=nx.spring_layout(G)) # use spring layout
>>> import matplotlib.pyplot as plt
>>> limits = plt.axis("off") # turn off axis
Also see the NetworkX drawing examples at
https://networkx.org/documentation/latest/auto_examples/index.html
See Also
--------
draw
draw_networkx_nodes
draw_networkx_edges
draw_networkx_labels
draw_networkx_edge_labels
"""
from inspect import signature
import matplotlib.pyplot as plt
# Get all valid keywords by inspecting the signatures of draw_networkx_nodes,
# draw_networkx_edges, draw_networkx_labels
valid_node_kwds = signature(draw_networkx_nodes).parameters.keys()
valid_edge_kwds = signature(draw_networkx_edges).parameters.keys()
valid_label_kwds = signature(draw_networkx_labels).parameters.keys()
# Create a set with all valid keywords across the three functions and
# remove the arguments of this function (draw_networkx)
valid_kwds = (valid_node_kwds | valid_edge_kwds | valid_label_kwds) - {
"G",
"pos",
"arrows",
"with_labels",
}
if any(k not in valid_kwds for k in kwds):
invalid_args = ", ".join([k for k in kwds if k not in valid_kwds])
raise ValueError(f"Received invalid argument(s): {invalid_args}")
node_kwds = {k: v for k, v in kwds.items() if k in valid_node_kwds}
edge_kwds = {k: v for k, v in kwds.items() if k in valid_edge_kwds}
label_kwds = {k: v for k, v in kwds.items() if k in valid_label_kwds}
if pos is None:
pos = nx.drawing.spring_layout(G) # default to spring layout
draw_networkx_nodes(G, pos, **node_kwds)
draw_networkx_edges(G, pos, arrows=arrows, **edge_kwds)
if with_labels:
draw_networkx_labels(G, pos, **label_kwds)
plt.draw_if_interactive()
def draw_networkx_nodes(
G,
pos,
nodelist=None,
node_size=300,
node_color="#1f78b4",
node_shape="o",
alpha=None,
cmap=None,
vmin=None,
vmax=None,
ax=None,
linewidths=None,
edgecolors=None,
label=None,
margins=None,
):
"""Draw the nodes of the graph G.
This draws only the nodes of the graph G.
Parameters
----------
G : graph
A networkx graph
pos : dictionary
A dictionary with nodes as keys and positions as values.
Positions should be sequences of length 2.
ax : Matplotlib Axes object, optional
Draw the graph in the specified Matplotlib axes.
nodelist : list (default list(G))
Draw only specified nodes
node_size : scalar or array (default=300)
Size of nodes. If an array it must be the same length as nodelist.
node_color : color or array of colors (default='#1f78b4')
Node color. Can be a single color or a sequence of colors with the same
length as nodelist. Color can be string or rgb (or rgba) tuple of
floats from 0-1. If numeric values are specified they will be
mapped to colors using the cmap and vmin,vmax parameters. See
matplotlib.scatter for more details.
node_shape : string (default='o')
The shape of the node. Specification is as matplotlib.scatter
marker, one of 'so^>v<dph8'.
alpha : float or array of floats (default=None)
The node transparency. This can be a single alpha value,
in which case it will be applied to all the nodes of color. Otherwise,
if it is an array, the elements of alpha will be applied to the colors
in order (cycling through alpha multiple times if necessary).
cmap : Matplotlib colormap (default=None)
Colormap for mapping intensities of nodes
vmin,vmax : floats or None (default=None)
Minimum and maximum for node colormap scaling
linewidths : [None | scalar | sequence] (default=1.0)
Line width of symbol border
edgecolors : [None | scalar | sequence] (default = node_color)
Colors of node borders. Can be a single color or a sequence of colors with the
same length as nodelist. Color can be string or rgb (or rgba) tuple of floats
from 0-1. If numeric values are specified they will be mapped to colors
using the cmap and vmin,vmax parameters. See `~matplotlib.pyplot.scatter` for more details.
label : [None | string]
Label for legend
margins : float or 2-tuple, optional
Sets the padding for axis autoscaling. Increase margin to prevent
clipping for nodes that are near the edges of an image. Values should
be in the range ``[0, 1]``. See :meth:`matplotlib.axes.Axes.margins`
for details. The default is `None`, which uses the Matplotlib default.
Returns
-------
matplotlib.collections.PathCollection
`PathCollection` of the nodes.
Examples
--------
>>> G = nx.dodecahedral_graph()
>>> nodes = nx.draw_networkx_nodes(G, pos=nx.spring_layout(G))
Also see the NetworkX drawing examples at
https://networkx.org/documentation/latest/auto_examples/index.html
See Also
--------
draw
draw_networkx
draw_networkx_edges
draw_networkx_labels
draw_networkx_edge_labels
"""
from collections.abc import Iterable
import matplotlib as mpl
import matplotlib.collections # call as mpl.collections
import matplotlib.pyplot as plt
import numpy as np
if ax is None:
ax = plt.gca()
if nodelist is None:
nodelist = list(G)
if len(nodelist) == 0: # empty nodelist, no drawing
return mpl.collections.PathCollection(None)
try:
xy = np.asarray([pos[v] for v in nodelist])
except KeyError as err:
raise nx.NetworkXError(f"Node {err} has no position.") from err
if isinstance(alpha, Iterable):
node_color = apply_alpha(node_color, alpha, nodelist, cmap, vmin, vmax)
alpha = None
node_collection = ax.scatter(
xy[:, 0],
xy[:, 1],
s=node_size,
c=node_color,
marker=node_shape,
cmap=cmap,
vmin=vmin,
vmax=vmax,
alpha=alpha,
linewidths=linewidths,
edgecolors=edgecolors,
label=label,
)
ax.tick_params(
axis="both",
which="both",
bottom=False,
left=False,
labelbottom=False,
labelleft=False,
)
if margins is not None:
if isinstance(margins, Iterable):
ax.margins(*margins)
else:
ax.margins(margins)
node_collection.set_zorder(2)
return node_collection
def draw_networkx_edges(
G,
pos,
edgelist=None,
width=1.0,
edge_color="k",
style="solid",
alpha=None,
arrowstyle=None,
arrowsize=10,
edge_cmap=None,
edge_vmin=None,
edge_vmax=None,
ax=None,
arrows=None,
label=None,
node_size=300,
nodelist=None,
node_shape="o",
connectionstyle="arc3",
min_source_margin=0,
min_target_margin=0,
):
r"""Draw the edges of the graph G.
This draws only the edges of the graph G.
Parameters
----------
G : graph
A networkx graph
pos : dictionary
A dictionary with nodes as keys and positions as values.
Positions should be sequences of length 2.
edgelist : collection of edge tuples (default=G.edges())
Draw only specified edges
width : float or array of floats (default=1.0)
Line width of edges
edge_color : color or array of colors (default='k')
Edge color. Can be a single color or a sequence of colors with the same
length as edgelist. Color can be string or rgb (or rgba) tuple of
floats from 0-1. If numeric values are specified they will be
mapped to colors using the edge_cmap and edge_vmin,edge_vmax parameters.
style : string or array of strings (default='solid')
Edge line style e.g.: '-', '--', '-.', ':'
or words like 'solid' or 'dashed'.
Can be a single style or a sequence of styles with the same
length as the edge list.
If less styles than edges are given the styles will cycle.
If more styles than edges are given the styles will be used sequentially
and not be exhausted.
Also, `(offset, onoffseq)` tuples can be used as style instead of a strings.
(See `matplotlib.patches.FancyArrowPatch`: `linestyle`)
alpha : float or array of floats (default=None)
The edge transparency. This can be a single alpha value,
in which case it will be applied to all specified edges. Otherwise,
if it is an array, the elements of alpha will be applied to the colors
in order (cycling through alpha multiple times if necessary).
edge_cmap : Matplotlib colormap, optional
Colormap for mapping intensities of edges
edge_vmin,edge_vmax : floats, optional
Minimum and maximum for edge colormap scaling
ax : Matplotlib Axes object, optional
Draw the graph in the specified Matplotlib axes.
arrows : bool or None, optional (default=None)
If `None`, directed graphs draw arrowheads with
`~matplotlib.patches.FancyArrowPatch`, while undirected graphs draw edges
via `~matplotlib.collections.LineCollection` for speed.
If `True`, draw arrowheads with FancyArrowPatches (bendable and stylish).
If `False`, draw edges using LineCollection (linear and fast).
Note: Arrowheads will be the same color as edges.
arrowstyle : str (default='-\|>' for directed graphs)
For directed graphs and `arrows==True` defaults to '-\|>',
For undirected graphs default to '-'.
See `matplotlib.patches.ArrowStyle` for more options.
arrowsize : int (default=10)
For directed graphs, choose the size of the arrow head's length and
width. See `matplotlib.patches.FancyArrowPatch` for attribute
`mutation_scale` for more info.
connectionstyle : string (default="arc3")
Pass the connectionstyle parameter to create curved arc of rounding
radius rad. For example, connectionstyle='arc3,rad=0.2'.
See `matplotlib.patches.ConnectionStyle` and
`matplotlib.patches.FancyArrowPatch` for more info.
node_size : scalar or array (default=300)
Size of nodes. Though the nodes are not drawn with this function, the
node size is used in determining edge positioning.
nodelist : list, optional (default=G.nodes())
This provides the node order for the `node_size` array (if it is an array).
node_shape : string (default='o')
The marker used for nodes, used in determining edge positioning.
Specification is as a `matplotlib.markers` marker, e.g. one of 'so^>v<dph8'.
label : None or string
Label for legend
min_source_margin : int (default=0)
The minimum margin (gap) at the beginning of the edge at the source.
min_target_margin : int (default=0)
The minimum margin (gap) at the end of the edge at the target.
Returns
-------
matplotlib.collections.LineCollection or a list of matplotlib.patches.FancyArrowPatch
If ``arrows=True``, a list of FancyArrowPatches is returned.
If ``arrows=False``, a LineCollection is returned.
If ``arrows=None`` (the default), then a LineCollection is returned if
`G` is undirected, otherwise returns a list of FancyArrowPatches.
Notes
-----
For directed graphs, arrows are drawn at the head end. Arrows can be
turned off with keyword arrows=False or by passing an arrowstyle without
an arrow on the end.
Be sure to include `node_size` as a keyword argument; arrows are
drawn considering the size of nodes.
Self-loops are always drawn with `~matplotlib.patches.FancyArrowPatch`
regardless of the value of `arrows` or whether `G` is directed.
When ``arrows=False`` or ``arrows=None`` and `G` is undirected, the
FancyArrowPatches corresponding to the self-loops are not explicitly
returned. They should instead be accessed via the ``Axes.patches``
attribute (see examples).
Examples
--------
>>> G = nx.dodecahedral_graph()
>>> edges = nx.draw_networkx_edges(G, pos=nx.spring_layout(G))
>>> G = nx.DiGraph()
>>> G.add_edges_from([(1, 2), (1, 3), (2, 3)])
>>> arcs = nx.draw_networkx_edges(G, pos=nx.spring_layout(G))
>>> alphas = [0.3, 0.4, 0.5]
>>> for i, arc in enumerate(arcs): # change alpha values of arcs
... arc.set_alpha(alphas[i])
The FancyArrowPatches corresponding to self-loops are not always
returned, but can always be accessed via the ``patches`` attribute of the
`matplotlib.Axes` object.
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots()
>>> G = nx.Graph([(0, 1), (0, 0)]) # Self-loop at node 0
>>> edge_collection = nx.draw_networkx_edges(G, pos=nx.circular_layout(G), ax=ax)
>>> self_loop_fap = ax.patches[0]
Also see the NetworkX drawing examples at
https://networkx.org/documentation/latest/auto_examples/index.html
See Also
--------
draw
draw_networkx
draw_networkx_nodes
draw_networkx_labels
draw_networkx_edge_labels
"""
import matplotlib as mpl
import matplotlib.collections # call as mpl.collections
import matplotlib.colors # call as mpl.colors
import matplotlib.patches # call as mpl.patches
import matplotlib.path # call as mpl.path
import matplotlib.pyplot as plt
import numpy as np
# The default behavior is to use LineCollection to draw edges for
# undirected graphs (for performance reasons) and use FancyArrowPatches
# for directed graphs.
# The `arrows` keyword can be used to override the default behavior
use_linecollection = not G.is_directed()
if arrows in (True, False):
use_linecollection = not arrows
# Some kwargs only apply to FancyArrowPatches. Warn users when they use
# non-default values for these kwargs when LineCollection is being used
# instead of silently ignoring the specified option
if use_linecollection and any(
[
arrowstyle is not None,
arrowsize != 10,
connectionstyle != "arc3",
min_source_margin != 0,
min_target_margin != 0,
]
):
import warnings
msg = (
"\n\nThe {0} keyword argument is not applicable when drawing edges\n"
"with LineCollection.\n\n"
"To make this warning go away, either specify `arrows=True` to\n"
"force FancyArrowPatches or use the default value for {0}.\n"
"Note that using FancyArrowPatches may be slow for large graphs.\n"
)
if arrowstyle is not None:
msg = msg.format("arrowstyle")
if arrowsize != 10:
msg = msg.format("arrowsize")
if connectionstyle != "arc3":
msg = msg.format("connectionstyle")
if min_source_margin != 0:
msg = msg.format("min_source_margin")
if min_target_margin != 0:
msg = msg.format("min_target_margin")
warnings.warn(msg, category=UserWarning, stacklevel=2)
if arrowstyle == None:
if G.is_directed():
arrowstyle = "-|>"
else:
arrowstyle = "-"
if ax is None:
ax = plt.gca()
if edgelist is None:
edgelist = list(G.edges())
if len(edgelist) == 0: # no edges!
return []
if nodelist is None:
nodelist = list(G.nodes())
# FancyArrowPatch handles color=None different from LineCollection
if edge_color is None:
edge_color = "k"
edgelist_tuple = list(map(tuple, edgelist))
# set edge positions
edge_pos = np.asarray([(pos[e[0]], pos[e[1]]) for e in edgelist])
# Check if edge_color is an array of floats and map to edge_cmap.
# This is the only case handled differently from matplotlib
if (
np.iterable(edge_color)
and (len(edge_color) == len(edge_pos))
and np.all([isinstance(c, Number) for c in edge_color])
):
if edge_cmap is not None:
assert isinstance(edge_cmap, mpl.colors.Colormap)
else:
edge_cmap = plt.get_cmap()
if edge_vmin is None:
edge_vmin = min(edge_color)
if edge_vmax is None:
edge_vmax = max(edge_color)
color_normal = mpl.colors.Normalize(vmin=edge_vmin, vmax=edge_vmax)
edge_color = [edge_cmap(color_normal(e)) for e in edge_color]
def _draw_networkx_edges_line_collection():
edge_collection = mpl.collections.LineCollection(
edge_pos,
colors=edge_color,
linewidths=width,
antialiaseds=(1,),
linestyle=style,
alpha=alpha,
)
edge_collection.set_cmap(edge_cmap)
edge_collection.set_clim(edge_vmin, edge_vmax)
edge_collection.set_zorder(1) # edges go behind nodes
edge_collection.set_label(label)
ax.add_collection(edge_collection)
return edge_collection
def _draw_networkx_edges_fancy_arrow_patch():
# Note: Waiting for someone to implement arrow to intersection with
# marker. Meanwhile, this works well for polygons with more than 4
# sides and circle.
def to_marker_edge(marker_size, marker):
if marker in "s^>v<d": # `large` markers need extra space
return np.sqrt(2 * marker_size) / 2
else:
return np.sqrt(marker_size) / 2
# Draw arrows with `matplotlib.patches.FancyarrowPatch`
arrow_collection = []
if isinstance(arrowsize, list):
if len(arrowsize) != len(edge_pos):
raise ValueError("arrowsize should have the same length as edgelist")
else:
mutation_scale = arrowsize # scale factor of arrow head
base_connection_style = mpl.patches.ConnectionStyle(connectionstyle)
# Fallback for self-loop scale. Left outside of _connectionstyle so it is
# only computed once
max_nodesize = np.array(node_size).max()
def _connectionstyle(posA, posB, *args, **kwargs):
# check if we need to do a self-loop
if np.all(posA == posB):
# Self-loops are scaled by view extent, except in cases the extent
# is 0, e.g. for a single node. In this case, fall back to scaling
# by the maximum node size
selfloop_ht = 0.005 * max_nodesize if h == 0 else h
# this is called with _screen space_ values so convert back
# to data space
data_loc = ax.transData.inverted().transform(posA)
v_shift = 0.1 * selfloop_ht
h_shift = v_shift * 0.5
# put the top of the loop first so arrow is not hidden by node
path = [
# 1
data_loc + np.asarray([0, v_shift]),
# 4 4 4
data_loc + np.asarray([h_shift, v_shift]),
data_loc + np.asarray([h_shift, 0]),
data_loc,
# 4 4 4
data_loc + np.asarray([-h_shift, 0]),
data_loc + np.asarray([-h_shift, v_shift]),
data_loc + np.asarray([0, v_shift]),
]
ret = mpl.path.Path(ax.transData.transform(path), [1, 4, 4, 4, 4, 4, 4])
# if not, fall back to the user specified behavior
else:
ret = base_connection_style(posA, posB, *args, **kwargs)
return ret
# FancyArrowPatch doesn't handle color strings
arrow_colors = mpl.colors.colorConverter.to_rgba_array(edge_color, alpha)
for i, (src, dst) in zip(fancy_edges_indices, edge_pos):
x1, y1 = src
x2, y2 = dst
shrink_source = 0 # space from source to tail
shrink_target = 0 # space from head to target
if isinstance(arrowsize, list):
# Scale each factor of each arrow based on arrowsize list
mutation_scale = arrowsize[i]
if np.iterable(node_size): # many node sizes
source, target = edgelist[i][:2]
source_node_size = node_size[nodelist.index(source)]
target_node_size = node_size[nodelist.index(target)]
shrink_source = to_marker_edge(source_node_size, node_shape)
shrink_target = to_marker_edge(target_node_size, node_shape)
else:
shrink_source = shrink_target = to_marker_edge(node_size, node_shape)
if shrink_source < min_source_margin:
shrink_source = min_source_margin
if shrink_target < min_target_margin:
shrink_target = min_target_margin
if len(arrow_colors) > i:
arrow_color = arrow_colors[i]
elif len(arrow_colors) == 1:
arrow_color = arrow_colors[0]
else: # Cycle through colors
arrow_color = arrow_colors[i % len(arrow_colors)]
if np.iterable(width):
if len(width) > i:
line_width = width[i]
else:
line_width = width[i % len(width)]
else:
line_width = width
if (
np.iterable(style)
and not isinstance(style, str)
and not isinstance(style, tuple)
):
if len(style) > i:
linestyle = style[i]
else: # Cycle through styles
linestyle = style[i % len(style)]
else:
linestyle = style
arrow = mpl.patches.FancyArrowPatch(
(x1, y1),
(x2, y2),
arrowstyle=arrowstyle,
shrinkA=shrink_source,
shrinkB=shrink_target,
mutation_scale=mutation_scale,
color=arrow_color,
linewidth=line_width,
connectionstyle=_connectionstyle,
linestyle=linestyle,
zorder=1,
) # arrows go behind nodes
arrow_collection.append(arrow)
ax.add_patch(arrow)
return arrow_collection
# compute initial view
minx = np.amin(np.ravel(edge_pos[:, :, 0]))
maxx = np.amax(np.ravel(edge_pos[:, :, 0]))
miny = np.amin(np.ravel(edge_pos[:, :, 1]))
maxy = np.amax(np.ravel(edge_pos[:, :, 1]))
w = maxx - minx
h = maxy - miny
# Draw the edges
if use_linecollection:
edge_viz_obj = _draw_networkx_edges_line_collection()
# Make sure selfloop edges are also drawn
selfloops_to_draw = [loop for loop in nx.selfloop_edges(G) if loop in edgelist]
if selfloops_to_draw:
fancy_edges_indices = [
edgelist_tuple.index(loop) for loop in selfloops_to_draw
]
edge_pos = np.asarray([(pos[e[0]], pos[e[1]]) for e in selfloops_to_draw])
arrowstyle = "-"
_draw_networkx_edges_fancy_arrow_patch()
else:
fancy_edges_indices = range(len(edgelist))
edge_viz_obj = _draw_networkx_edges_fancy_arrow_patch()
# update view after drawing
padx, pady = 0.05 * w, 0.05 * h
corners = (minx - padx, miny - pady), (maxx + padx, maxy + pady)
ax.update_datalim(corners)
ax.autoscale_view()
ax.tick_params(
axis="both",
which="both",
bottom=False,
left=False,
labelbottom=False,
labelleft=False,
)
return edge_viz_obj
def draw_networkx_labels(
G,
pos,
labels=None,
font_size=12,
font_color="k",
font_family="sans-serif",
font_weight="normal",
alpha=None,
bbox=None,
horizontalalignment="center",
verticalalignment="center",
ax=None,
clip_on=True,
):
"""Draw node labels on the graph G.
Parameters
----------
G : graph
A networkx graph
pos : dictionary
A dictionary with nodes as keys and positions as values.
Positions should be sequences of length 2.
labels : dictionary (default={n: n for n in G})
Node labels in a dictionary of text labels keyed by node.
Node-keys in labels should appear as keys in `pos`.
If needed use: `{n:lab for n,lab in labels.items() if n in pos}`
font_size : int (default=12)
Font size for text labels
font_color : color (default='k' black)
Font color string. Color can be string or rgb (or rgba) tuple of
floats from 0-1.
font_weight : string (default='normal')
Font weight
font_family : string (default='sans-serif')
Font family
alpha : float or None (default=None)
The text transparency
bbox : Matplotlib bbox, (default is Matplotlib's ax.text default)
Specify text box properties (e.g. shape, color etc.) for node labels.
horizontalalignment : string (default='center')
Horizontal alignment {'center', 'right', 'left'}
verticalalignment : string (default='center')
Vertical alignment {'center', 'top', 'bottom', 'baseline', 'center_baseline'}
ax : Matplotlib Axes object, optional
Draw the graph in the specified Matplotlib axes.
clip_on : bool (default=True)
Turn on clipping of node labels at axis boundaries
Returns
-------
dict
`dict` of labels keyed on the nodes
Examples
--------
>>> G = nx.dodecahedral_graph()
>>> labels = nx.draw_networkx_labels(G, pos=nx.spring_layout(G))
Also see the NetworkX drawing examples at
https://networkx.org/documentation/latest/auto_examples/index.html
See Also
--------
draw
draw_networkx
draw_networkx_nodes
draw_networkx_edges
draw_networkx_edge_labels
"""
import matplotlib.pyplot as plt
if ax is None:
ax = plt.gca()
if labels is None:
labels = {n: n for n in G.nodes()}
text_items = {} # there is no text collection so we'll fake one
for n, label in labels.items():
(x, y) = pos[n]
if not isinstance(label, str):
label = str(label) # this makes "1" and 1 labeled the same
t = ax.text(
x,
y,
label,
size=font_size,
color=font_color,
family=font_family,
weight=font_weight,
alpha=alpha,
horizontalalignment=horizontalalignment,
verticalalignment=verticalalignment,
transform=ax.transData,
bbox=bbox,
clip_on=clip_on,
)
text_items[n] = t
ax.tick_params(
axis="both",
which="both",
bottom=False,
left=False,
labelbottom=False,
labelleft=False,
)
return text_items
def draw_networkx_edge_labels(
G,
pos,
edge_labels=None,
label_pos=0.5,
font_size=10,
font_color="k",
font_family="sans-serif",
font_weight="normal",
alpha=None,
bbox=None,
horizontalalignment="center",
verticalalignment="center",
ax=None,
rotate=True,
clip_on=True,
):
"""Draw edge labels.
Parameters
----------
G : graph
A networkx graph
pos : dictionary
A dictionary with nodes as keys and positions as values.
Positions should be sequences of length 2.
edge_labels : dictionary (default=None)
Edge labels in a dictionary of labels keyed by edge two-tuple.
Only labels for the keys in the dictionary are drawn.
label_pos : float (default=0.5)
Position of edge label along edge (0=head, 0.5=center, 1=tail)
font_size : int (default=10)
Font size for text labels
font_color : color (default='k' black)
Font color string. Color can be string or rgb (or rgba) tuple of
floats from 0-1.
font_weight : string (default='normal')
Font weight
font_family : string (default='sans-serif')
Font family
alpha : float or None (default=None)
The text transparency
bbox : Matplotlib bbox, optional
Specify text box properties (e.g. shape, color etc.) for edge labels.
Default is {boxstyle='round', ec=(1.0, 1.0, 1.0), fc=(1.0, 1.0, 1.0)}.
horizontalalignment : string (default='center')
Horizontal alignment {'center', 'right', 'left'}
verticalalignment : string (default='center')
Vertical alignment {'center', 'top', 'bottom', 'baseline', 'center_baseline'}
ax : Matplotlib Axes object, optional
Draw the graph in the specified Matplotlib axes.
rotate : bool (default=True)
Rotate edge labels to lie parallel to edges
clip_on : bool (default=True)
Turn on clipping of edge labels at axis boundaries
Returns
-------
dict
`dict` of labels keyed by edge
Examples
--------
>>> G = nx.dodecahedral_graph()
>>> edge_labels = nx.draw_networkx_edge_labels(G, pos=nx.spring_layout(G))
Also see the NetworkX drawing examples at
https://networkx.org/documentation/latest/auto_examples/index.html
See Also
--------
draw
draw_networkx
draw_networkx_nodes
draw_networkx_edges
draw_networkx_labels
"""
import matplotlib.pyplot as plt
import numpy as np
if ax is None:
ax = plt.gca()
if edge_labels is None:
labels = {(u, v): d for u, v, d in G.edges(data=True)}
else:
labels = edge_labels
# Informative exception for multiedges
try:
(u, v) = next(iter(labels)) # ensures no edge key provided
except ValueError as err:
raise nx.NetworkXError(
"draw_networkx_edge_labels does not support multiedges."
) from err
except StopIteration:
pass
text_items = {}
for (n1, n2), label in labels.items():
(x1, y1) = pos[n1]
(x2, y2) = pos[n2]
(x, y) = (
x1 * label_pos + x2 * (1.0 - label_pos),
y1 * label_pos + y2 * (1.0 - label_pos),
)
if rotate:
# in degrees
angle = np.arctan2(y2 - y1, x2 - x1) / (2.0 * np.pi) * 360
# make label orientation "right-side-up"
if angle > 90:
angle -= 180
if angle < -90:
angle += 180
# transform data coordinate angle to screen coordinate angle
xy = np.array((x, y))
trans_angle = ax.transData.transform_angles(
np.array((angle,)), xy.reshape((1, 2))
)[0]
else:
trans_angle = 0.0
# use default box of white with white border
if bbox is None:
bbox = {"boxstyle": "round", "ec": (1.0, 1.0, 1.0), "fc": (1.0, 1.0, 1.0)}
if not isinstance(label, str):
label = str(label) # this makes "1" and 1 labeled the same
t = ax.text(
x,
y,
label,
size=font_size,
color=font_color,
family=font_family,
weight=font_weight,
alpha=alpha,
horizontalalignment=horizontalalignment,
verticalalignment=verticalalignment,
rotation=trans_angle,
transform=ax.transData,
bbox=bbox,
zorder=1,
clip_on=clip_on,
)
text_items[(n1, n2)] = t
ax.tick_params(
axis="both",
which="both",
bottom=False,
left=False,
labelbottom=False,
labelleft=False,
)
return text_items
def draw_circular(G, **kwargs):
"""Draw the graph `G` with a circular layout.
This is a convenience function equivalent to::
nx.draw(G, pos=nx.circular_layout(G), **kwargs)
Parameters
----------
G : graph
A networkx graph
kwargs : optional keywords
See `draw_networkx` for a description of optional keywords.
Notes
-----
The layout is computed each time this function is called. For
repeated drawing it is much more efficient to call
`~networkx.drawing.layout.circular_layout` directly and reuse the result::
>>> G = nx.complete_graph(5)
>>> pos = nx.circular_layout(G)
>>> nx.draw(G, pos=pos) # Draw the original graph
>>> # Draw a subgraph, reusing the same node positions
>>> nx.draw(G.subgraph([0, 1, 2]), pos=pos, node_color="red")
Examples
--------
>>> G = nx.path_graph(5)
>>> nx.draw_circular(G)
See Also
--------
:func:`~networkx.drawing.layout.circular_layout`
"""
draw(G, circular_layout(G), **kwargs)
def draw_kamada_kawai(G, **kwargs):
"""Draw the graph `G` with a Kamada-Kawai force-directed layout.
This is a convenience function equivalent to::
nx.draw(G, pos=nx.kamada_kawai_layout(G), **kwargs)
Parameters
----------
G : graph
A networkx graph
kwargs : optional keywords
See `draw_networkx` for a description of optional keywords.
Notes
-----
The layout is computed each time this function is called.
For repeated drawing it is much more efficient to call
`~networkx.drawing.layout.kamada_kawai_layout` directly and reuse the
result::
>>> G = nx.complete_graph(5)
>>> pos = nx.kamada_kawai_layout(G)
>>> nx.draw(G, pos=pos) # Draw the original graph
>>> # Draw a subgraph, reusing the same node positions
>>> nx.draw(G.subgraph([0, 1, 2]), pos=pos, node_color="red")
Examples
--------
>>> G = nx.path_graph(5)
>>> nx.draw_kamada_kawai(G)
See Also
--------
:func:`~networkx.drawing.layout.kamada_kawai_layout`
"""
draw(G, kamada_kawai_layout(G), **kwargs)
def draw_random(G, **kwargs):
"""Draw the graph `G` with a random layout.
This is a convenience function equivalent to::
nx.draw(G, pos=nx.random_layout(G), **kwargs)
Parameters
----------
G : graph
A networkx graph
kwargs : optional keywords
See `draw_networkx` for a description of optional keywords.
Notes
-----
The layout is computed each time this function is called.
For repeated drawing it is much more efficient to call
`~networkx.drawing.layout.random_layout` directly and reuse the result::
>>> G = nx.complete_graph(5)
>>> pos = nx.random_layout(G)
>>> nx.draw(G, pos=pos) # Draw the original graph
>>> # Draw a subgraph, reusing the same node positions
>>> nx.draw(G.subgraph([0, 1, 2]), pos=pos, node_color="red")
Examples
--------
>>> G = nx.lollipop_graph(4, 3)
>>> nx.draw_random(G)
See Also
--------
:func:`~networkx.drawing.layout.random_layout`
"""
draw(G, random_layout(G), **kwargs)
def draw_spectral(G, **kwargs):
"""Draw the graph `G` with a spectral 2D layout.
This is a convenience function equivalent to::
nx.draw(G, pos=nx.spectral_layout(G), **kwargs)
For more information about how node positions are determined, see
`~networkx.drawing.layout.spectral_layout`.
Parameters
----------
G : graph
A networkx graph
kwargs : optional keywords
See `draw_networkx` for a description of optional keywords.
Notes
-----
The layout is computed each time this function is called.
For repeated drawing it is much more efficient to call
`~networkx.drawing.layout.spectral_layout` directly and reuse the result::
>>> G = nx.complete_graph(5)
>>> pos = nx.spectral_layout(G)
>>> nx.draw(G, pos=pos) # Draw the original graph
>>> # Draw a subgraph, reusing the same node positions
>>> nx.draw(G.subgraph([0, 1, 2]), pos=pos, node_color="red")
Examples
--------
>>> G = nx.path_graph(5)
>>> nx.draw_spectral(G)
See Also
--------
:func:`~networkx.drawing.layout.spectral_layout`
"""
draw(G, spectral_layout(G), **kwargs)
def draw_spring(G, **kwargs):
"""Draw the graph `G` with a spring layout.
This is a convenience function equivalent to::
nx.draw(G, pos=nx.spring_layout(G), **kwargs)
Parameters
----------
G : graph
A networkx graph
kwargs : optional keywords
See `draw_networkx` for a description of optional keywords.
Notes
-----
`~networkx.drawing.layout.spring_layout` is also the default layout for
`draw`, so this function is equivalent to `draw`.
The layout is computed each time this function is called.
For repeated drawing it is much more efficient to call
`~networkx.drawing.layout.spring_layout` directly and reuse the result::
>>> G = nx.complete_graph(5)
>>> pos = nx.spring_layout(G)
>>> nx.draw(G, pos=pos) # Draw the original graph
>>> # Draw a subgraph, reusing the same node positions
>>> nx.draw(G.subgraph([0, 1, 2]), pos=pos, node_color="red")
Examples
--------
>>> G = nx.path_graph(20)
>>> nx.draw_spring(G)
See Also
--------
draw
:func:`~networkx.drawing.layout.spring_layout`
"""
draw(G, spring_layout(G), **kwargs)
def draw_shell(G, nlist=None, **kwargs):
"""Draw networkx graph `G` with shell layout.
This is a convenience function equivalent to::
nx.draw(G, pos=nx.shell_layout(G, nlist=nlist), **kwargs)
Parameters
----------
G : graph
A networkx graph
nlist : list of list of nodes, optional
A list containing lists of nodes representing the shells.
Default is `None`, meaning all nodes are in a single shell.
See `~networkx.drawing.layout.shell_layout` for details.
kwargs : optional keywords
See `draw_networkx` for a description of optional keywords.
Notes
-----
The layout is computed each time this function is called.
For repeated drawing it is much more efficient to call
`~networkx.drawing.layout.shell_layout` directly and reuse the result::
>>> G = nx.complete_graph(5)
>>> pos = nx.shell_layout(G)
>>> nx.draw(G, pos=pos) # Draw the original graph
>>> # Draw a subgraph, reusing the same node positions
>>> nx.draw(G.subgraph([0, 1, 2]), pos=pos, node_color="red")
Examples
--------
>>> G = nx.path_graph(4)
>>> shells = [[0], [1, 2, 3]]
>>> nx.draw_shell(G, nlist=shells)
See Also
--------
:func:`~networkx.drawing.layout.shell_layout`
"""
draw(G, shell_layout(G, nlist=nlist), **kwargs)
def draw_planar(G, **kwargs):
"""Draw a planar networkx graph `G` with planar layout.
This is a convenience function equivalent to::
nx.draw(G, pos=nx.planar_layout(G), **kwargs)
Parameters
----------
G : graph
A planar networkx graph
kwargs : optional keywords
See `draw_networkx` for a description of optional keywords.
Raises
------
NetworkXException
When `G` is not planar
Notes
-----
The layout is computed each time this function is called.
For repeated drawing it is much more efficient to call
`~networkx.drawing.layout.planar_layout` directly and reuse the result::
>>> G = nx.path_graph(5)
>>> pos = nx.planar_layout(G)
>>> nx.draw(G, pos=pos) # Draw the original graph
>>> # Draw a subgraph, reusing the same node positions
>>> nx.draw(G.subgraph([0, 1, 2]), pos=pos, node_color="red")
Examples
--------
>>> G = nx.path_graph(4)
>>> nx.draw_planar(G)
See Also
--------
:func:`~networkx.drawing.layout.planar_layout`
"""
draw(G, planar_layout(G), **kwargs)
def apply_alpha(colors, alpha, elem_list, cmap=None, vmin=None, vmax=None):
"""Apply an alpha (or list of alphas) to the colors provided.
Parameters
----------
colors : color string or array of floats (default='r')
Color of element. Can be a single color format string,
or a sequence of colors with the same length as nodelist.
If numeric values are specified they will be mapped to
colors using the cmap and vmin,vmax parameters. See
matplotlib.scatter for more details.
alpha : float or array of floats
Alpha values for elements. This can be a single alpha value, in
which case it will be applied to all the elements of color. Otherwise,
if it is an array, the elements of alpha will be applied to the colors
in order (cycling through alpha multiple times if necessary).
elem_list : array of networkx objects
The list of elements which are being colored. These could be nodes,
edges or labels.
cmap : matplotlib colormap
Color map for use if colors is a list of floats corresponding to points
on a color mapping.
vmin, vmax : float
Minimum and maximum values for normalizing colors if a colormap is used
Returns
-------
rgba_colors : numpy ndarray
Array containing RGBA format values for each of the node colours.
"""
from itertools import cycle, islice
import matplotlib as mpl
import matplotlib.cm # call as mpl.cm
import matplotlib.colors # call as mpl.colors
import numpy as np
# If we have been provided with a list of numbers as long as elem_list,
# apply the color mapping.
if len(colors) == len(elem_list) and isinstance(colors[0], Number):
mapper = mpl.cm.ScalarMappable(cmap=cmap)
mapper.set_clim(vmin, vmax)
rgba_colors = mapper.to_rgba(colors)
# Otherwise, convert colors to matplotlib's RGB using the colorConverter
# object. These are converted to numpy ndarrays to be consistent with the
# to_rgba method of ScalarMappable.
else:
try:
rgba_colors = np.array([mpl.colors.colorConverter.to_rgba(colors)])
except ValueError:
rgba_colors = np.array(
[mpl.colors.colorConverter.to_rgba(color) for color in colors]
)
# Set the final column of the rgba_colors to have the relevant alpha values
try:
# If alpha is longer than the number of colors, resize to the number of
# elements. Also, if rgba_colors.size (the number of elements of
# rgba_colors) is the same as the number of elements, resize the array,
# to avoid it being interpreted as a colormap by scatter()
if len(alpha) > len(rgba_colors) or rgba_colors.size == len(elem_list):
rgba_colors = np.resize(rgba_colors, (len(elem_list), 4))
rgba_colors[1:, 0] = rgba_colors[0, 0]
rgba_colors[1:, 1] = rgba_colors[0, 1]
rgba_colors[1:, 2] = rgba_colors[0, 2]
rgba_colors[:, 3] = list(islice(cycle(alpha), len(rgba_colors)))
except TypeError:
rgba_colors[:, -1] = alpha
return rgba_colors