429 lines
13 KiB
Python
429 lines
13 KiB
Python
|
"""Laplacian matrix of graphs.
|
||
|
"""
|
||
|
import networkx as nx
|
||
|
from networkx.utils import not_implemented_for
|
||
|
|
||
|
__all__ = [
|
||
|
"laplacian_matrix",
|
||
|
"normalized_laplacian_matrix",
|
||
|
"total_spanning_tree_weight",
|
||
|
"directed_laplacian_matrix",
|
||
|
"directed_combinatorial_laplacian_matrix",
|
||
|
]
|
||
|
|
||
|
|
||
|
@not_implemented_for("directed")
|
||
|
@nx._dispatch(edge_attrs="weight")
|
||
|
def laplacian_matrix(G, nodelist=None, weight="weight"):
|
||
|
"""Returns the Laplacian matrix of G.
|
||
|
|
||
|
The graph Laplacian is the matrix L = D - A, where
|
||
|
A is the adjacency matrix and D is the diagonal matrix of node degrees.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
G : graph
|
||
|
A NetworkX graph
|
||
|
|
||
|
nodelist : list, optional
|
||
|
The rows and columns are ordered according to the nodes in nodelist.
|
||
|
If nodelist is None, then the ordering is produced by G.nodes().
|
||
|
|
||
|
weight : string or None, optional (default='weight')
|
||
|
The edge data key used to compute each value in the matrix.
|
||
|
If None, then each edge has weight 1.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
L : SciPy sparse array
|
||
|
The Laplacian matrix of G.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
For MultiGraph, the edges weights are summed.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
:func:`~networkx.convert_matrix.to_numpy_array`
|
||
|
normalized_laplacian_matrix
|
||
|
:func:`~networkx.linalg.spectrum.laplacian_spectrum`
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
For graphs with multiple connected components, L is permutation-similar
|
||
|
to a block diagonal matrix where each block is the respective Laplacian
|
||
|
matrix for each component.
|
||
|
|
||
|
>>> G = nx.Graph([(1, 2), (2, 3), (4, 5)])
|
||
|
>>> print(nx.laplacian_matrix(G).toarray())
|
||
|
[[ 1 -1 0 0 0]
|
||
|
[-1 2 -1 0 0]
|
||
|
[ 0 -1 1 0 0]
|
||
|
[ 0 0 0 1 -1]
|
||
|
[ 0 0 0 -1 1]]
|
||
|
|
||
|
"""
|
||
|
import scipy as sp
|
||
|
|
||
|
if nodelist is None:
|
||
|
nodelist = list(G)
|
||
|
A = nx.to_scipy_sparse_array(G, nodelist=nodelist, weight=weight, format="csr")
|
||
|
n, m = A.shape
|
||
|
# TODO: rm csr_array wrapper when spdiags can produce arrays
|
||
|
D = sp.sparse.csr_array(sp.sparse.spdiags(A.sum(axis=1), 0, m, n, format="csr"))
|
||
|
return D - A
|
||
|
|
||
|
|
||
|
@not_implemented_for("directed")
|
||
|
@nx._dispatch(edge_attrs="weight")
|
||
|
def normalized_laplacian_matrix(G, nodelist=None, weight="weight"):
|
||
|
r"""Returns the normalized Laplacian matrix of G.
|
||
|
|
||
|
The normalized graph Laplacian is the matrix
|
||
|
|
||
|
.. math::
|
||
|
|
||
|
N = D^{-1/2} L D^{-1/2}
|
||
|
|
||
|
where `L` is the graph Laplacian and `D` is the diagonal matrix of
|
||
|
node degrees [1]_.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
G : graph
|
||
|
A NetworkX graph
|
||
|
|
||
|
nodelist : list, optional
|
||
|
The rows and columns are ordered according to the nodes in nodelist.
|
||
|
If nodelist is None, then the ordering is produced by G.nodes().
|
||
|
|
||
|
weight : string or None, optional (default='weight')
|
||
|
The edge data key used to compute each value in the matrix.
|
||
|
If None, then each edge has weight 1.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
N : SciPy sparse array
|
||
|
The normalized Laplacian matrix of G.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
For MultiGraph, the edges weights are summed.
|
||
|
See :func:`to_numpy_array` for other options.
|
||
|
|
||
|
If the Graph contains selfloops, D is defined as ``diag(sum(A, 1))``, where A is
|
||
|
the adjacency matrix [2]_.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
laplacian_matrix
|
||
|
normalized_laplacian_spectrum
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] Fan Chung-Graham, Spectral Graph Theory,
|
||
|
CBMS Regional Conference Series in Mathematics, Number 92, 1997.
|
||
|
.. [2] Steve Butler, Interlacing For Weighted Graphs Using The Normalized
|
||
|
Laplacian, Electronic Journal of Linear Algebra, Volume 16, pp. 90-98,
|
||
|
March 2007.
|
||
|
"""
|
||
|
import numpy as np
|
||
|
import scipy as sp
|
||
|
|
||
|
if nodelist is None:
|
||
|
nodelist = list(G)
|
||
|
A = nx.to_scipy_sparse_array(G, nodelist=nodelist, weight=weight, format="csr")
|
||
|
n, m = A.shape
|
||
|
diags = A.sum(axis=1)
|
||
|
# TODO: rm csr_array wrapper when spdiags can produce arrays
|
||
|
D = sp.sparse.csr_array(sp.sparse.spdiags(diags, 0, m, n, format="csr"))
|
||
|
L = D - A
|
||
|
with np.errstate(divide="ignore"):
|
||
|
diags_sqrt = 1.0 / np.sqrt(diags)
|
||
|
diags_sqrt[np.isinf(diags_sqrt)] = 0
|
||
|
# TODO: rm csr_array wrapper when spdiags can produce arrays
|
||
|
DH = sp.sparse.csr_array(sp.sparse.spdiags(diags_sqrt, 0, m, n, format="csr"))
|
||
|
return DH @ (L @ DH)
|
||
|
|
||
|
|
||
|
@nx._dispatch(edge_attrs="weight")
|
||
|
def total_spanning_tree_weight(G, weight=None):
|
||
|
"""
|
||
|
Returns the total weight of all spanning trees of `G`.
|
||
|
|
||
|
Kirchoff's Tree Matrix Theorem states that the determinant of any cofactor of the
|
||
|
Laplacian matrix of a graph is the number of spanning trees in the graph. For a
|
||
|
weighted Laplacian matrix, it is the sum across all spanning trees of the
|
||
|
multiplicative weight of each tree. That is, the weight of each tree is the
|
||
|
product of its edge weights.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
G : NetworkX Graph
|
||
|
The graph to use Kirchhoff's theorem on.
|
||
|
|
||
|
weight : string or None
|
||
|
The key for the edge attribute holding the edge weight. If `None`, then
|
||
|
each edge is assumed to have a weight of 1 and this function returns the
|
||
|
total number of spanning trees in `G`.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
float
|
||
|
The sum of the total multiplicative weights for all spanning trees in `G`
|
||
|
"""
|
||
|
import numpy as np
|
||
|
|
||
|
G_laplacian = nx.laplacian_matrix(G, weight=weight).toarray()
|
||
|
# Determinant ignoring first row and column
|
||
|
return abs(np.linalg.det(G_laplacian[1:, 1:]))
|
||
|
|
||
|
|
||
|
###############################################################################
|
||
|
# Code based on work from https://github.com/bjedwards
|
||
|
|
||
|
|
||
|
@not_implemented_for("undirected")
|
||
|
@not_implemented_for("multigraph")
|
||
|
@nx._dispatch(edge_attrs="weight")
|
||
|
def directed_laplacian_matrix(
|
||
|
G, nodelist=None, weight="weight", walk_type=None, alpha=0.95
|
||
|
):
|
||
|
r"""Returns the directed Laplacian matrix of G.
|
||
|
|
||
|
The graph directed Laplacian is the matrix
|
||
|
|
||
|
.. math::
|
||
|
|
||
|
L = I - (\Phi^{1/2} P \Phi^{-1/2} + \Phi^{-1/2} P^T \Phi^{1/2} ) / 2
|
||
|
|
||
|
where `I` is the identity matrix, `P` is the transition matrix of the
|
||
|
graph, and `\Phi` a matrix with the Perron vector of `P` in the diagonal and
|
||
|
zeros elsewhere [1]_.
|
||
|
|
||
|
Depending on the value of walk_type, `P` can be the transition matrix
|
||
|
induced by a random walk, a lazy random walk, or a random walk with
|
||
|
teleportation (PageRank).
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
G : DiGraph
|
||
|
A NetworkX graph
|
||
|
|
||
|
nodelist : list, optional
|
||
|
The rows and columns are ordered according to the nodes in nodelist.
|
||
|
If nodelist is None, then the ordering is produced by G.nodes().
|
||
|
|
||
|
weight : string or None, optional (default='weight')
|
||
|
The edge data key used to compute each value in the matrix.
|
||
|
If None, then each edge has weight 1.
|
||
|
|
||
|
walk_type : string or None, optional (default=None)
|
||
|
If None, `P` is selected depending on the properties of the
|
||
|
graph. Otherwise is one of 'random', 'lazy', or 'pagerank'
|
||
|
|
||
|
alpha : real
|
||
|
(1 - alpha) is the teleportation probability used with pagerank
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
L : NumPy matrix
|
||
|
Normalized Laplacian of G.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
Only implemented for DiGraphs
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
laplacian_matrix
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] Fan Chung (2005).
|
||
|
Laplacians and the Cheeger inequality for directed graphs.
|
||
|
Annals of Combinatorics, 9(1), 2005
|
||
|
"""
|
||
|
import numpy as np
|
||
|
import scipy as sp
|
||
|
|
||
|
# NOTE: P has type ndarray if walk_type=="pagerank", else csr_array
|
||
|
P = _transition_matrix(
|
||
|
G, nodelist=nodelist, weight=weight, walk_type=walk_type, alpha=alpha
|
||
|
)
|
||
|
|
||
|
n, m = P.shape
|
||
|
|
||
|
evals, evecs = sp.sparse.linalg.eigs(P.T, k=1)
|
||
|
v = evecs.flatten().real
|
||
|
p = v / v.sum()
|
||
|
# p>=0 by Perron-Frobenius Thm. Use abs() to fix roundoff across zero gh-6865
|
||
|
sqrtp = np.sqrt(np.abs(p))
|
||
|
Q = (
|
||
|
# TODO: rm csr_array wrapper when spdiags creates arrays
|
||
|
sp.sparse.csr_array(sp.sparse.spdiags(sqrtp, 0, n, n))
|
||
|
@ P
|
||
|
# TODO: rm csr_array wrapper when spdiags creates arrays
|
||
|
@ sp.sparse.csr_array(sp.sparse.spdiags(1.0 / sqrtp, 0, n, n))
|
||
|
)
|
||
|
# NOTE: This could be sparsified for the non-pagerank cases
|
||
|
I = np.identity(len(G))
|
||
|
|
||
|
return I - (Q + Q.T) / 2.0
|
||
|
|
||
|
|
||
|
@not_implemented_for("undirected")
|
||
|
@not_implemented_for("multigraph")
|
||
|
@nx._dispatch(edge_attrs="weight")
|
||
|
def directed_combinatorial_laplacian_matrix(
|
||
|
G, nodelist=None, weight="weight", walk_type=None, alpha=0.95
|
||
|
):
|
||
|
r"""Return the directed combinatorial Laplacian matrix of G.
|
||
|
|
||
|
The graph directed combinatorial Laplacian is the matrix
|
||
|
|
||
|
.. math::
|
||
|
|
||
|
L = \Phi - (\Phi P + P^T \Phi) / 2
|
||
|
|
||
|
where `P` is the transition matrix of the graph and `\Phi` a matrix
|
||
|
with the Perron vector of `P` in the diagonal and zeros elsewhere [1]_.
|
||
|
|
||
|
Depending on the value of walk_type, `P` can be the transition matrix
|
||
|
induced by a random walk, a lazy random walk, or a random walk with
|
||
|
teleportation (PageRank).
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
G : DiGraph
|
||
|
A NetworkX graph
|
||
|
|
||
|
nodelist : list, optional
|
||
|
The rows and columns are ordered according to the nodes in nodelist.
|
||
|
If nodelist is None, then the ordering is produced by G.nodes().
|
||
|
|
||
|
weight : string or None, optional (default='weight')
|
||
|
The edge data key used to compute each value in the matrix.
|
||
|
If None, then each edge has weight 1.
|
||
|
|
||
|
walk_type : string or None, optional (default=None)
|
||
|
If None, `P` is selected depending on the properties of the
|
||
|
graph. Otherwise is one of 'random', 'lazy', or 'pagerank'
|
||
|
|
||
|
alpha : real
|
||
|
(1 - alpha) is the teleportation probability used with pagerank
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
L : NumPy matrix
|
||
|
Combinatorial Laplacian of G.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
Only implemented for DiGraphs
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
laplacian_matrix
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] Fan Chung (2005).
|
||
|
Laplacians and the Cheeger inequality for directed graphs.
|
||
|
Annals of Combinatorics, 9(1), 2005
|
||
|
"""
|
||
|
import scipy as sp
|
||
|
|
||
|
P = _transition_matrix(
|
||
|
G, nodelist=nodelist, weight=weight, walk_type=walk_type, alpha=alpha
|
||
|
)
|
||
|
|
||
|
n, m = P.shape
|
||
|
|
||
|
evals, evecs = sp.sparse.linalg.eigs(P.T, k=1)
|
||
|
v = evecs.flatten().real
|
||
|
p = v / v.sum()
|
||
|
# NOTE: could be improved by not densifying
|
||
|
# TODO: Rm csr_array wrapper when spdiags array creation becomes available
|
||
|
Phi = sp.sparse.csr_array(sp.sparse.spdiags(p, 0, n, n)).toarray()
|
||
|
|
||
|
return Phi - (Phi @ P + P.T @ Phi) / 2.0
|
||
|
|
||
|
|
||
|
def _transition_matrix(G, nodelist=None, weight="weight", walk_type=None, alpha=0.95):
|
||
|
"""Returns the transition matrix of G.
|
||
|
|
||
|
This is a row stochastic giving the transition probabilities while
|
||
|
performing a random walk on the graph. Depending on the value of walk_type,
|
||
|
P can be the transition matrix induced by a random walk, a lazy random walk,
|
||
|
or a random walk with teleportation (PageRank).
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
G : DiGraph
|
||
|
A NetworkX graph
|
||
|
|
||
|
nodelist : list, optional
|
||
|
The rows and columns are ordered according to the nodes in nodelist.
|
||
|
If nodelist is None, then the ordering is produced by G.nodes().
|
||
|
|
||
|
weight : string or None, optional (default='weight')
|
||
|
The edge data key used to compute each value in the matrix.
|
||
|
If None, then each edge has weight 1.
|
||
|
|
||
|
walk_type : string or None, optional (default=None)
|
||
|
If None, `P` is selected depending on the properties of the
|
||
|
graph. Otherwise is one of 'random', 'lazy', or 'pagerank'
|
||
|
|
||
|
alpha : real
|
||
|
(1 - alpha) is the teleportation probability used with pagerank
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
P : numpy.ndarray
|
||
|
transition matrix of G.
|
||
|
|
||
|
Raises
|
||
|
------
|
||
|
NetworkXError
|
||
|
If walk_type not specified or alpha not in valid range
|
||
|
"""
|
||
|
import numpy as np
|
||
|
import scipy as sp
|
||
|
|
||
|
if walk_type is None:
|
||
|
if nx.is_strongly_connected(G):
|
||
|
if nx.is_aperiodic(G):
|
||
|
walk_type = "random"
|
||
|
else:
|
||
|
walk_type = "lazy"
|
||
|
else:
|
||
|
walk_type = "pagerank"
|
||
|
|
||
|
A = nx.to_scipy_sparse_array(G, nodelist=nodelist, weight=weight, dtype=float)
|
||
|
n, m = A.shape
|
||
|
if walk_type in ["random", "lazy"]:
|
||
|
# TODO: Rm csr_array wrapper when spdiags array creation becomes available
|
||
|
DI = sp.sparse.csr_array(sp.sparse.spdiags(1.0 / A.sum(axis=1), 0, n, n))
|
||
|
if walk_type == "random":
|
||
|
P = DI @ A
|
||
|
else:
|
||
|
# TODO: Rm csr_array wrapper when identity array creation becomes available
|
||
|
I = sp.sparse.csr_array(sp.sparse.identity(n))
|
||
|
P = (I + DI @ A) / 2.0
|
||
|
|
||
|
elif walk_type == "pagerank":
|
||
|
if not (0 < alpha < 1):
|
||
|
raise nx.NetworkXError("alpha must be between 0 and 1")
|
||
|
# this is using a dense representation. NOTE: This should be sparsified!
|
||
|
A = A.toarray()
|
||
|
# add constant to dangling nodes' row
|
||
|
A[A.sum(axis=1) == 0, :] = 1 / n
|
||
|
# normalize
|
||
|
A = A / A.sum(axis=1)[np.newaxis, :].T
|
||
|
P = alpha * A + (1 - alpha) / n
|
||
|
else:
|
||
|
raise nx.NetworkXError("walk_type must be random, lazy, or pagerank")
|
||
|
|
||
|
return P
|