348 lines
14 KiB
Python
348 lines
14 KiB
Python
|
import pytest
|
||
|
|
||
|
import networkx as nx
|
||
|
from networkx.generators.classic import empty_graph
|
||
|
from networkx.utils import edges_equal, nodes_equal
|
||
|
|
||
|
|
||
|
class TestRelabel:
|
||
|
def test_convert_node_labels_to_integers(self):
|
||
|
# test that empty graph converts fine for all options
|
||
|
G = empty_graph()
|
||
|
H = nx.convert_node_labels_to_integers(G, 100)
|
||
|
assert list(H.nodes()) == []
|
||
|
assert list(H.edges()) == []
|
||
|
|
||
|
for opt in ["default", "sorted", "increasing degree", "decreasing degree"]:
|
||
|
G = empty_graph()
|
||
|
H = nx.convert_node_labels_to_integers(G, 100, ordering=opt)
|
||
|
assert list(H.nodes()) == []
|
||
|
assert list(H.edges()) == []
|
||
|
|
||
|
G = empty_graph()
|
||
|
G.add_edges_from([("A", "B"), ("A", "C"), ("B", "C"), ("C", "D")])
|
||
|
H = nx.convert_node_labels_to_integers(G)
|
||
|
degH = (d for n, d in H.degree())
|
||
|
degG = (d for n, d in G.degree())
|
||
|
assert sorted(degH) == sorted(degG)
|
||
|
|
||
|
H = nx.convert_node_labels_to_integers(G, 1000)
|
||
|
degH = (d for n, d in H.degree())
|
||
|
degG = (d for n, d in G.degree())
|
||
|
assert sorted(degH) == sorted(degG)
|
||
|
assert nodes_equal(H.nodes(), [1000, 1001, 1002, 1003])
|
||
|
|
||
|
H = nx.convert_node_labels_to_integers(G, ordering="increasing degree")
|
||
|
degH = (d for n, d in H.degree())
|
||
|
degG = (d for n, d in G.degree())
|
||
|
assert sorted(degH) == sorted(degG)
|
||
|
assert H.degree(0) == 1
|
||
|
assert H.degree(1) == 2
|
||
|
assert H.degree(2) == 2
|
||
|
assert H.degree(3) == 3
|
||
|
|
||
|
H = nx.convert_node_labels_to_integers(G, ordering="decreasing degree")
|
||
|
degH = (d for n, d in H.degree())
|
||
|
degG = (d for n, d in G.degree())
|
||
|
assert sorted(degH) == sorted(degG)
|
||
|
assert H.degree(0) == 3
|
||
|
assert H.degree(1) == 2
|
||
|
assert H.degree(2) == 2
|
||
|
assert H.degree(3) == 1
|
||
|
|
||
|
H = nx.convert_node_labels_to_integers(
|
||
|
G, ordering="increasing degree", label_attribute="label"
|
||
|
)
|
||
|
degH = (d for n, d in H.degree())
|
||
|
degG = (d for n, d in G.degree())
|
||
|
assert sorted(degH) == sorted(degG)
|
||
|
assert H.degree(0) == 1
|
||
|
assert H.degree(1) == 2
|
||
|
assert H.degree(2) == 2
|
||
|
assert H.degree(3) == 3
|
||
|
|
||
|
# check mapping
|
||
|
assert H.nodes[3]["label"] == "C"
|
||
|
assert H.nodes[0]["label"] == "D"
|
||
|
assert H.nodes[1]["label"] == "A" or H.nodes[2]["label"] == "A"
|
||
|
assert H.nodes[1]["label"] == "B" or H.nodes[2]["label"] == "B"
|
||
|
|
||
|
def test_convert_to_integers2(self):
|
||
|
G = empty_graph()
|
||
|
G.add_edges_from([("C", "D"), ("A", "B"), ("A", "C"), ("B", "C")])
|
||
|
H = nx.convert_node_labels_to_integers(G, ordering="sorted")
|
||
|
degH = (d for n, d in H.degree())
|
||
|
degG = (d for n, d in G.degree())
|
||
|
assert sorted(degH) == sorted(degG)
|
||
|
|
||
|
H = nx.convert_node_labels_to_integers(
|
||
|
G, ordering="sorted", label_attribute="label"
|
||
|
)
|
||
|
assert H.nodes[0]["label"] == "A"
|
||
|
assert H.nodes[1]["label"] == "B"
|
||
|
assert H.nodes[2]["label"] == "C"
|
||
|
assert H.nodes[3]["label"] == "D"
|
||
|
|
||
|
def test_convert_to_integers_raise(self):
|
||
|
with pytest.raises(nx.NetworkXError):
|
||
|
G = nx.Graph()
|
||
|
H = nx.convert_node_labels_to_integers(G, ordering="increasing age")
|
||
|
|
||
|
def test_relabel_nodes_copy(self):
|
||
|
G = nx.empty_graph()
|
||
|
G.add_edges_from([("A", "B"), ("A", "C"), ("B", "C"), ("C", "D")])
|
||
|
mapping = {"A": "aardvark", "B": "bear", "C": "cat", "D": "dog"}
|
||
|
H = nx.relabel_nodes(G, mapping)
|
||
|
assert nodes_equal(H.nodes(), ["aardvark", "bear", "cat", "dog"])
|
||
|
|
||
|
def test_relabel_nodes_function(self):
|
||
|
G = nx.empty_graph()
|
||
|
G.add_edges_from([("A", "B"), ("A", "C"), ("B", "C"), ("C", "D")])
|
||
|
# function mapping no longer encouraged but works
|
||
|
|
||
|
def mapping(n):
|
||
|
return ord(n)
|
||
|
|
||
|
H = nx.relabel_nodes(G, mapping)
|
||
|
assert nodes_equal(H.nodes(), [65, 66, 67, 68])
|
||
|
|
||
|
def test_relabel_nodes_callable_type(self):
|
||
|
G = nx.path_graph(4)
|
||
|
H = nx.relabel_nodes(G, str)
|
||
|
assert nodes_equal(H.nodes, ["0", "1", "2", "3"])
|
||
|
|
||
|
@pytest.mark.parametrize("non_mc", ("0123", ["0", "1", "2", "3"]))
|
||
|
def test_relabel_nodes_non_mapping_or_callable(self, non_mc):
|
||
|
"""If `mapping` is neither a Callable or a Mapping, an exception
|
||
|
should be raised."""
|
||
|
G = nx.path_graph(4)
|
||
|
with pytest.raises(AttributeError):
|
||
|
nx.relabel_nodes(G, non_mc)
|
||
|
|
||
|
def test_relabel_nodes_graph(self):
|
||
|
G = nx.Graph([("A", "B"), ("A", "C"), ("B", "C"), ("C", "D")])
|
||
|
mapping = {"A": "aardvark", "B": "bear", "C": "cat", "D": "dog"}
|
||
|
H = nx.relabel_nodes(G, mapping)
|
||
|
assert nodes_equal(H.nodes(), ["aardvark", "bear", "cat", "dog"])
|
||
|
|
||
|
def test_relabel_nodes_orderedgraph(self):
|
||
|
G = nx.Graph()
|
||
|
G.add_nodes_from([1, 2, 3])
|
||
|
G.add_edges_from([(1, 3), (2, 3)])
|
||
|
mapping = {1: "a", 2: "b", 3: "c"}
|
||
|
H = nx.relabel_nodes(G, mapping)
|
||
|
assert list(H.nodes) == ["a", "b", "c"]
|
||
|
|
||
|
def test_relabel_nodes_digraph(self):
|
||
|
G = nx.DiGraph([("A", "B"), ("A", "C"), ("B", "C"), ("C", "D")])
|
||
|
mapping = {"A": "aardvark", "B": "bear", "C": "cat", "D": "dog"}
|
||
|
H = nx.relabel_nodes(G, mapping, copy=False)
|
||
|
assert nodes_equal(H.nodes(), ["aardvark", "bear", "cat", "dog"])
|
||
|
|
||
|
def test_relabel_nodes_multigraph(self):
|
||
|
G = nx.MultiGraph([("a", "b"), ("a", "b")])
|
||
|
mapping = {"a": "aardvark", "b": "bear"}
|
||
|
G = nx.relabel_nodes(G, mapping, copy=False)
|
||
|
assert nodes_equal(G.nodes(), ["aardvark", "bear"])
|
||
|
assert edges_equal(G.edges(), [("aardvark", "bear"), ("aardvark", "bear")])
|
||
|
|
||
|
def test_relabel_nodes_multidigraph(self):
|
||
|
G = nx.MultiDiGraph([("a", "b"), ("a", "b")])
|
||
|
mapping = {"a": "aardvark", "b": "bear"}
|
||
|
G = nx.relabel_nodes(G, mapping, copy=False)
|
||
|
assert nodes_equal(G.nodes(), ["aardvark", "bear"])
|
||
|
assert edges_equal(G.edges(), [("aardvark", "bear"), ("aardvark", "bear")])
|
||
|
|
||
|
def test_relabel_isolated_nodes_to_same(self):
|
||
|
G = nx.Graph()
|
||
|
G.add_nodes_from(range(4))
|
||
|
mapping = {1: 1}
|
||
|
H = nx.relabel_nodes(G, mapping, copy=False)
|
||
|
assert nodes_equal(H.nodes(), list(range(4)))
|
||
|
|
||
|
def test_relabel_nodes_missing(self):
|
||
|
G = nx.Graph([("A", "B"), ("A", "C"), ("B", "C"), ("C", "D")])
|
||
|
mapping = {0: "aardvark"}
|
||
|
# copy=True
|
||
|
H = nx.relabel_nodes(G, mapping, copy=True)
|
||
|
assert nodes_equal(H.nodes, G.nodes)
|
||
|
# copy=False
|
||
|
GG = G.copy()
|
||
|
nx.relabel_nodes(G, mapping, copy=False)
|
||
|
assert nodes_equal(G.nodes, GG.nodes)
|
||
|
|
||
|
def test_relabel_copy_name(self):
|
||
|
G = nx.Graph()
|
||
|
H = nx.relabel_nodes(G, {}, copy=True)
|
||
|
assert H.graph == G.graph
|
||
|
H = nx.relabel_nodes(G, {}, copy=False)
|
||
|
assert H.graph == G.graph
|
||
|
G.name = "first"
|
||
|
H = nx.relabel_nodes(G, {}, copy=True)
|
||
|
assert H.graph == G.graph
|
||
|
H = nx.relabel_nodes(G, {}, copy=False)
|
||
|
assert H.graph == G.graph
|
||
|
|
||
|
def test_relabel_toposort(self):
|
||
|
K5 = nx.complete_graph(4)
|
||
|
G = nx.complete_graph(4)
|
||
|
G = nx.relabel_nodes(G, {i: i + 1 for i in range(4)}, copy=False)
|
||
|
assert nx.is_isomorphic(K5, G)
|
||
|
G = nx.complete_graph(4)
|
||
|
G = nx.relabel_nodes(G, {i: i - 1 for i in range(4)}, copy=False)
|
||
|
assert nx.is_isomorphic(K5, G)
|
||
|
|
||
|
def test_relabel_selfloop(self):
|
||
|
G = nx.DiGraph([(1, 1), (1, 2), (2, 3)])
|
||
|
G = nx.relabel_nodes(G, {1: "One", 2: "Two", 3: "Three"}, copy=False)
|
||
|
assert nodes_equal(G.nodes(), ["One", "Three", "Two"])
|
||
|
G = nx.MultiDiGraph([(1, 1), (1, 2), (2, 3)])
|
||
|
G = nx.relabel_nodes(G, {1: "One", 2: "Two", 3: "Three"}, copy=False)
|
||
|
assert nodes_equal(G.nodes(), ["One", "Three", "Two"])
|
||
|
G = nx.MultiDiGraph([(1, 1)])
|
||
|
G = nx.relabel_nodes(G, {1: 0}, copy=False)
|
||
|
assert nodes_equal(G.nodes(), [0])
|
||
|
|
||
|
def test_relabel_multidigraph_inout_merge_nodes(self):
|
||
|
for MG in (nx.MultiGraph, nx.MultiDiGraph):
|
||
|
for cc in (True, False):
|
||
|
G = MG([(0, 4), (1, 4), (4, 2), (4, 3)])
|
||
|
G[0][4][0]["value"] = "a"
|
||
|
G[1][4][0]["value"] = "b"
|
||
|
G[4][2][0]["value"] = "c"
|
||
|
G[4][3][0]["value"] = "d"
|
||
|
G.add_edge(0, 4, key="x", value="e")
|
||
|
G.add_edge(4, 3, key="x", value="f")
|
||
|
mapping = {0: 9, 1: 9, 2: 9, 3: 9}
|
||
|
H = nx.relabel_nodes(G, mapping, copy=cc)
|
||
|
# No ordering on keys enforced
|
||
|
assert {"value": "a"} in H[9][4].values()
|
||
|
assert {"value": "b"} in H[9][4].values()
|
||
|
assert {"value": "c"} in H[4][9].values()
|
||
|
assert len(H[4][9]) == 3 if G.is_directed() else 6
|
||
|
assert {"value": "d"} in H[4][9].values()
|
||
|
assert {"value": "e"} in H[9][4].values()
|
||
|
assert {"value": "f"} in H[4][9].values()
|
||
|
assert len(H[9][4]) == 3 if G.is_directed() else 6
|
||
|
|
||
|
def test_relabel_multigraph_merge_inplace(self):
|
||
|
G = nx.MultiGraph([(0, 1), (0, 2), (0, 3), (0, 1), (0, 2), (0, 3)])
|
||
|
G[0][1][0]["value"] = "a"
|
||
|
G[0][2][0]["value"] = "b"
|
||
|
G[0][3][0]["value"] = "c"
|
||
|
mapping = {1: 4, 2: 4, 3: 4}
|
||
|
nx.relabel_nodes(G, mapping, copy=False)
|
||
|
# No ordering on keys enforced
|
||
|
assert {"value": "a"} in G[0][4].values()
|
||
|
assert {"value": "b"} in G[0][4].values()
|
||
|
assert {"value": "c"} in G[0][4].values()
|
||
|
|
||
|
def test_relabel_multidigraph_merge_inplace(self):
|
||
|
G = nx.MultiDiGraph([(0, 1), (0, 2), (0, 3)])
|
||
|
G[0][1][0]["value"] = "a"
|
||
|
G[0][2][0]["value"] = "b"
|
||
|
G[0][3][0]["value"] = "c"
|
||
|
mapping = {1: 4, 2: 4, 3: 4}
|
||
|
nx.relabel_nodes(G, mapping, copy=False)
|
||
|
# No ordering on keys enforced
|
||
|
assert {"value": "a"} in G[0][4].values()
|
||
|
assert {"value": "b"} in G[0][4].values()
|
||
|
assert {"value": "c"} in G[0][4].values()
|
||
|
|
||
|
def test_relabel_multidigraph_inout_copy(self):
|
||
|
G = nx.MultiDiGraph([(0, 4), (1, 4), (4, 2), (4, 3)])
|
||
|
G[0][4][0]["value"] = "a"
|
||
|
G[1][4][0]["value"] = "b"
|
||
|
G[4][2][0]["value"] = "c"
|
||
|
G[4][3][0]["value"] = "d"
|
||
|
G.add_edge(0, 4, key="x", value="e")
|
||
|
G.add_edge(4, 3, key="x", value="f")
|
||
|
mapping = {0: 9, 1: 9, 2: 9, 3: 9}
|
||
|
H = nx.relabel_nodes(G, mapping, copy=True)
|
||
|
# No ordering on keys enforced
|
||
|
assert {"value": "a"} in H[9][4].values()
|
||
|
assert {"value": "b"} in H[9][4].values()
|
||
|
assert {"value": "c"} in H[4][9].values()
|
||
|
assert len(H[4][9]) == 3
|
||
|
assert {"value": "d"} in H[4][9].values()
|
||
|
assert {"value": "e"} in H[9][4].values()
|
||
|
assert {"value": "f"} in H[4][9].values()
|
||
|
assert len(H[9][4]) == 3
|
||
|
|
||
|
def test_relabel_multigraph_merge_copy(self):
|
||
|
G = nx.MultiGraph([(0, 1), (0, 2), (0, 3)])
|
||
|
G[0][1][0]["value"] = "a"
|
||
|
G[0][2][0]["value"] = "b"
|
||
|
G[0][3][0]["value"] = "c"
|
||
|
mapping = {1: 4, 2: 4, 3: 4}
|
||
|
H = nx.relabel_nodes(G, mapping, copy=True)
|
||
|
assert {"value": "a"} in H[0][4].values()
|
||
|
assert {"value": "b"} in H[0][4].values()
|
||
|
assert {"value": "c"} in H[0][4].values()
|
||
|
|
||
|
def test_relabel_multidigraph_merge_copy(self):
|
||
|
G = nx.MultiDiGraph([(0, 1), (0, 2), (0, 3)])
|
||
|
G[0][1][0]["value"] = "a"
|
||
|
G[0][2][0]["value"] = "b"
|
||
|
G[0][3][0]["value"] = "c"
|
||
|
mapping = {1: 4, 2: 4, 3: 4}
|
||
|
H = nx.relabel_nodes(G, mapping, copy=True)
|
||
|
assert {"value": "a"} in H[0][4].values()
|
||
|
assert {"value": "b"} in H[0][4].values()
|
||
|
assert {"value": "c"} in H[0][4].values()
|
||
|
|
||
|
def test_relabel_multigraph_nonnumeric_key(self):
|
||
|
for MG in (nx.MultiGraph, nx.MultiDiGraph):
|
||
|
for cc in (True, False):
|
||
|
G = nx.MultiGraph()
|
||
|
G.add_edge(0, 1, key="I", value="a")
|
||
|
G.add_edge(0, 2, key="II", value="b")
|
||
|
G.add_edge(0, 3, key="II", value="c")
|
||
|
mapping = {1: 4, 2: 4, 3: 4}
|
||
|
nx.relabel_nodes(G, mapping, copy=False)
|
||
|
assert {"value": "a"} in G[0][4].values()
|
||
|
assert {"value": "b"} in G[0][4].values()
|
||
|
assert {"value": "c"} in G[0][4].values()
|
||
|
assert 0 in G[0][4]
|
||
|
assert "I" in G[0][4]
|
||
|
assert "II" in G[0][4]
|
||
|
|
||
|
def test_relabel_circular(self):
|
||
|
G = nx.path_graph(3)
|
||
|
mapping = {0: 1, 1: 0}
|
||
|
H = nx.relabel_nodes(G, mapping, copy=True)
|
||
|
with pytest.raises(nx.NetworkXUnfeasible):
|
||
|
H = nx.relabel_nodes(G, mapping, copy=False)
|
||
|
|
||
|
def test_relabel_preserve_node_order_full_mapping_with_copy_true(self):
|
||
|
G = nx.path_graph(3)
|
||
|
original_order = list(G.nodes())
|
||
|
mapping = {2: "a", 1: "b", 0: "c"} # dictionary keys out of order on purpose
|
||
|
H = nx.relabel_nodes(G, mapping, copy=True)
|
||
|
new_order = list(H.nodes())
|
||
|
assert [mapping.get(i, i) for i in original_order] == new_order
|
||
|
|
||
|
def test_relabel_preserve_node_order_full_mapping_with_copy_false(self):
|
||
|
G = nx.path_graph(3)
|
||
|
original_order = list(G)
|
||
|
mapping = {2: "a", 1: "b", 0: "c"} # dictionary keys out of order on purpose
|
||
|
H = nx.relabel_nodes(G, mapping, copy=False)
|
||
|
new_order = list(H)
|
||
|
assert [mapping.get(i, i) for i in original_order] == new_order
|
||
|
|
||
|
def test_relabel_preserve_node_order_partial_mapping_with_copy_true(self):
|
||
|
G = nx.path_graph(3)
|
||
|
original_order = list(G)
|
||
|
mapping = {1: "a", 0: "b"} # partial mapping and keys out of order on purpose
|
||
|
H = nx.relabel_nodes(G, mapping, copy=True)
|
||
|
new_order = list(H)
|
||
|
assert [mapping.get(i, i) for i in original_order] == new_order
|
||
|
|
||
|
def test_relabel_preserve_node_order_partial_mapping_with_copy_false(self):
|
||
|
G = nx.path_graph(3)
|
||
|
original_order = list(G)
|
||
|
mapping = {1: "a", 0: "b"} # partial mapping and keys out of order on purpose
|
||
|
H = nx.relabel_nodes(G, mapping, copy=False)
|
||
|
new_order = list(H)
|
||
|
assert [mapping.get(i, i) for i in original_order] != new_order
|