import base64 import numbers import textwrap import uuid from importlib import import_module import copy import io import re import sys import warnings from _plotly_utils.optional_imports import get_module # back-port of fullmatch from Py3.4+ def fullmatch(regex, string, flags=0): """Emulate python-3.4 re.fullmatch().""" if "pattern" in dir(regex): regex_string = regex.pattern else: regex_string = regex return re.match("(?:" + regex_string + r")\Z", string, flags=flags) # Utility functions # ----------------- def to_scalar_or_list(v): # Handle the case where 'v' is a non-native scalar-like type, # such as numpy.float32. Without this case, the object might be # considered numpy-convertable and therefore promoted to a # 0-dimensional array, but we instead want it converted to a # Python native scalar type ('float' in the example above). # We explicitly check if is has the 'item' method, which conventionally # converts these types to native scalars. np = get_module("numpy", should_load=False) pd = get_module("pandas", should_load=False) if np and np.isscalar(v) and hasattr(v, "item"): return v.item() if isinstance(v, (list, tuple)): return [to_scalar_or_list(e) for e in v] elif np and isinstance(v, np.ndarray): if v.ndim == 0: return v.item() return [to_scalar_or_list(e) for e in v] elif pd and isinstance(v, (pd.Series, pd.Index)): return [to_scalar_or_list(e) for e in v] elif is_numpy_convertable(v): return to_scalar_or_list(np.array(v)) else: return v def copy_to_readonly_numpy_array(v, kind=None, force_numeric=False): """ Convert an array-like value into a read-only numpy array Parameters ---------- v : array like Array like value (list, tuple, numpy array, pandas series, etc.) kind : str or tuple of str If specified, the numpy dtype kind (or kinds) that the array should have, or be converted to if possible. If not specified then let numpy infer the datatype force_numeric : bool If true, raise an exception if the resulting numpy array does not have a numeric dtype (i.e. dtype.kind not in ['u', 'i', 'f']) Returns ------- np.ndarray Numpy array with the 'WRITEABLE' flag set to False """ np = get_module("numpy") # Don't force pandas to be loaded, we only want to know if it's already loaded pd = get_module("pandas", should_load=False) assert np is not None # ### Process kind ### if not kind: kind = () elif isinstance(kind, str): kind = (kind,) first_kind = kind[0] if kind else None # u: unsigned int, i: signed int, f: float numeric_kinds = {"u", "i", "f"} kind_default_dtypes = { "u": "uint32", "i": "int32", "f": "float64", "O": "object", } # Handle pandas Series and Index objects if pd and isinstance(v, (pd.Series, pd.Index)): if v.dtype.kind in numeric_kinds: # Get the numeric numpy array so we use fast path below v = v.values elif v.dtype.kind == "M": # Convert datetime Series/Index to numpy array of datetimes if isinstance(v, pd.Series): with warnings.catch_warnings(): warnings.simplefilter("ignore", FutureWarning) # Series.dt.to_pydatetime will return Index[object] # https://github.com/pandas-dev/pandas/pull/52459 v = np.array(v.dt.to_pydatetime()) else: # DatetimeIndex v = v.to_pydatetime() elif pd and isinstance(v, pd.DataFrame) and len(set(v.dtypes)) == 1: dtype = v.dtypes.tolist()[0] if dtype.kind in numeric_kinds: v = v.values elif dtype.kind == "M": with warnings.catch_warnings(): warnings.simplefilter("ignore", FutureWarning) # Series.dt.to_pydatetime will return Index[object] # https://github.com/pandas-dev/pandas/pull/52459 v = [ np.array(row.dt.to_pydatetime()).tolist() for i, row in v.iterrows() ] if not isinstance(v, np.ndarray): # v has its own logic on how to convert itself into a numpy array if is_numpy_convertable(v): return copy_to_readonly_numpy_array( np.array(v), kind=kind, force_numeric=force_numeric ) else: # v is not homogenous array v_list = [to_scalar_or_list(e) for e in v] # Lookup dtype for requested kind, if any dtype = kind_default_dtypes.get(first_kind, None) # construct new array from list new_v = np.array(v_list, order="C", dtype=dtype) elif v.dtype.kind in numeric_kinds: # v is a homogenous numeric array if kind and v.dtype.kind not in kind: # Kind(s) were specified and this array doesn't match # Convert to the default dtype for the first kind dtype = kind_default_dtypes.get(first_kind, None) new_v = np.ascontiguousarray(v.astype(dtype)) else: # Either no kind was requested or requested kind is satisfied new_v = np.ascontiguousarray(v.copy()) else: # v is a non-numeric homogenous array new_v = v.copy() # Handle force numeric param # -------------------------- if force_numeric and new_v.dtype.kind not in numeric_kinds: raise ValueError( "Input value is not numeric and force_numeric parameter set to True" ) if "U" not in kind: # Force non-numeric arrays to have object type # -------------------------------------------- # Here we make sure that non-numeric arrays have the object # datatype. This works around cases like np.array([1, 2, '3']) where # numpy converts the integers to strings and returns array of dtype # ' 'x' for anchor-style # enumeration properties self.regex_replacements = [] # Loop over enumeration values # ---------------------------- # Look for regular expressions for v in self.values: if v and isinstance(v, str) and v[0] == "/" and v[-1] == "/" and len(v) > 1: # String is a regex with leading and trailing '/' character regex_str = v[1:-1] self.val_regexs.append(re.compile(regex_str)) self.regex_replacements.append( EnumeratedValidator.build_regex_replacement(regex_str) ) else: self.val_regexs.append(None) self.regex_replacements.append(None) def __deepcopy__(self, memodict={}): """ A custom deepcopy method is needed here because compiled regex objects don't support deepcopy """ cls = self.__class__ return cls(self.plotly_name, self.parent_name, values=self.values) @staticmethod def build_regex_replacement(regex_str): # Example: regex_str == r"^y([2-9]|[1-9][0-9]+)?$" # # When we see a regular expression like the one above, we want to # build regular expression replacement params that will remove a # suffix of 1 from the input string ('y1' -> 'y' in this example) # # Why?: Regular expressions like this one are used in enumeration # properties that refer to subplotids (e.g. layout.annotation.xref) # The regular expressions forbid suffixes of 1, like 'x1'. But we # want to accept 'x1' and coerce it into 'x' # # To be cautious, we only perform this conversion for enumerated # values that match the anchor-style regex match = re.match( r"\^(\w)\(\[2\-9\]\|\[1\-9\]\[0\-9\]\+\)\?\( domain\)\?\$", regex_str ) if match: anchor_char = match.group(1) return "^" + anchor_char + "1$", anchor_char else: return None def perform_replacemenet(self, v): """ Return v with any applicable regex replacements applied """ if isinstance(v, str): for repl_args in self.regex_replacements: if repl_args: v = re.sub(repl_args[0], repl_args[1], v) return v def description(self): # Separate regular values from regular expressions enum_vals = [] enum_regexs = [] for v, regex in zip(self.values, self.val_regexs): if regex is not None: enum_regexs.append(regex.pattern) else: enum_vals.append(v) desc = """\ The '{name}' property is an enumeration that may be specified as:""".format( name=self.plotly_name ) if enum_vals: enum_vals_str = "\n".join( textwrap.wrap( repr(enum_vals), initial_indent=" " * 12, subsequent_indent=" " * 12, break_on_hyphens=False, ) ) desc = ( desc + """ - One of the following enumeration values: {enum_vals_str}""".format( enum_vals_str=enum_vals_str ) ) if enum_regexs: enum_regexs_str = "\n".join( textwrap.wrap( repr(enum_regexs), initial_indent=" " * 12, subsequent_indent=" " * 12, break_on_hyphens=False, ) ) desc = ( desc + """ - A string that matches one of the following regular expressions: {enum_regexs_str}""".format( enum_regexs_str=enum_regexs_str ) ) if self.array_ok: desc = ( desc + """ - A tuple, list, or one-dimensional numpy array of the above""" ) return desc def in_values(self, e): """ Return whether a value matches one of the enumeration options """ is_str = isinstance(e, str) for v, regex in zip(self.values, self.val_regexs): if is_str and regex: in_values = fullmatch(regex, e) is not None # in_values = regex.fullmatch(e) is not None else: in_values = e == v if in_values: return True return False def validate_coerce(self, v): if v is None: # Pass None through pass elif self.array_ok and is_array(v): v_replaced = [self.perform_replacemenet(v_el) for v_el in v] invalid_els = [e for e in v_replaced if (not self.in_values(e))] if invalid_els: self.raise_invalid_elements(invalid_els[:10]) if is_homogeneous_array(v): v = copy_to_readonly_numpy_array(v) else: v = to_scalar_or_list(v) else: v = self.perform_replacemenet(v) if not self.in_values(v): self.raise_invalid_val(v) return v class BooleanValidator(BaseValidator): """ "boolean": { "description": "A boolean (true/false) value.", "requiredOpts": [], "otherOpts": [ "dflt" ] }, """ def __init__(self, plotly_name, parent_name, **kwargs): super(BooleanValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, **kwargs ) def description(self): return """\ The '{plotly_name}' property must be specified as a bool (either True, or False)""".format( plotly_name=self.plotly_name ) def validate_coerce(self, v): if v is None: # Pass None through pass elif not isinstance(v, bool): self.raise_invalid_val(v) return v class SrcValidator(BaseValidator): def __init__(self, plotly_name, parent_name, **kwargs): super(SrcValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, **kwargs ) self.chart_studio = get_module("chart_studio") def description(self): return """\ The '{plotly_name}' property must be specified as a string or as a plotly.grid_objs.Column object""".format( plotly_name=self.plotly_name ) def validate_coerce(self, v): if v is None: # Pass None through pass elif isinstance(v, str): pass elif self.chart_studio and isinstance(v, self.chart_studio.grid_objs.Column): # Convert to id string v = v.id else: self.raise_invalid_val(v) return v class NumberValidator(BaseValidator): """ "number": { "description": "A number or a numeric value (e.g. a number inside a string). When applicable, values greater (less) than `max` (`min`) are coerced to the `dflt`.", "requiredOpts": [], "otherOpts": [ "dflt", "min", "max", "arrayOk" ] }, """ def __init__( self, plotly_name, parent_name, min=None, max=None, array_ok=False, **kwargs ): super(NumberValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, **kwargs ) # Handle min if min is None and max is not None: # Max was specified, so make min -inf self.min_val = float("-inf") else: self.min_val = min # Handle max if max is None and min is not None: # Min was specified, so make min inf self.max_val = float("inf") else: self.max_val = max if min is not None or max is not None: self.has_min_max = True else: self.has_min_max = False self.array_ok = array_ok def description(self): desc = """\ The '{plotly_name}' property is a number and may be specified as:""".format( plotly_name=self.plotly_name ) if not self.has_min_max: desc = ( desc + """ - An int or float""" ) else: desc = ( desc + """ - An int or float in the interval [{min_val}, {max_val}]""".format( min_val=self.min_val, max_val=self.max_val ) ) if self.array_ok: desc = ( desc + """ - A tuple, list, or one-dimensional numpy array of the above""" ) return desc def validate_coerce(self, v): if v is None: # Pass None through pass elif self.array_ok and is_homogeneous_array(v): np = get_module("numpy") try: v_array = copy_to_readonly_numpy_array(v, force_numeric=True) except (ValueError, TypeError, OverflowError): self.raise_invalid_val(v) # Check min/max if self.has_min_max: v_valid = np.logical_and( self.min_val <= v_array, v_array <= self.max_val ) if not np.all(v_valid): # Grab up to the first 10 invalid values v_invalid = np.logical_not(v_valid) some_invalid_els = np.array(v, dtype="object")[v_invalid][ :10 ].tolist() self.raise_invalid_elements(some_invalid_els) v = v_array # Always numeric numpy array elif self.array_ok and is_simple_array(v): # Check numeric invalid_els = [e for e in v if not isinstance(e, numbers.Number)] if invalid_els: self.raise_invalid_elements(invalid_els[:10]) # Check min/max if self.has_min_max: invalid_els = [e for e in v if not (self.min_val <= e <= self.max_val)] if invalid_els: self.raise_invalid_elements(invalid_els[:10]) v = to_scalar_or_list(v) else: # Check numeric if not isinstance(v, numbers.Number): self.raise_invalid_val(v) # Check min/max if self.has_min_max: if not (self.min_val <= v <= self.max_val): self.raise_invalid_val(v) return v class IntegerValidator(BaseValidator): """ "integer": { "description": "An integer or an integer inside a string. When applicable, values greater (less) than `max` (`min`) are coerced to the `dflt`.", "requiredOpts": [], "otherOpts": [ "dflt", "min", "max", "arrayOk" ] }, """ def __init__( self, plotly_name, parent_name, min=None, max=None, array_ok=False, **kwargs ): super(IntegerValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, **kwargs ) # Handle min if min is None and max is not None: # Max was specified, so make min -inf self.min_val = -sys.maxsize - 1 else: self.min_val = min # Handle max if max is None and min is not None: # Min was specified, so make min inf self.max_val = sys.maxsize else: self.max_val = max if min is not None or max is not None: self.has_min_max = True else: self.has_min_max = False self.array_ok = array_ok def description(self): desc = """\ The '{plotly_name}' property is a integer and may be specified as:""".format( plotly_name=self.plotly_name ) if not self.has_min_max: desc = ( desc + """ - An int (or float that will be cast to an int)""" ) else: desc = desc + ( """ - An int (or float that will be cast to an int) in the interval [{min_val}, {max_val}]""".format( min_val=self.min_val, max_val=self.max_val ) ) if self.array_ok: desc = ( desc + """ - A tuple, list, or one-dimensional numpy array of the above""" ) return desc def validate_coerce(self, v): if v is None: # Pass None through pass elif self.array_ok and is_homogeneous_array(v): np = get_module("numpy") v_array = copy_to_readonly_numpy_array( v, kind=("i", "u"), force_numeric=True ) if v_array.dtype.kind not in ["i", "u"]: self.raise_invalid_val(v) # Check min/max if self.has_min_max: v_valid = np.logical_and( self.min_val <= v_array, v_array <= self.max_val ) if not np.all(v_valid): # Grab up to the first 10 invalid values v_invalid = np.logical_not(v_valid) some_invalid_els = np.array(v, dtype="object")[v_invalid][ :10 ].tolist() self.raise_invalid_elements(some_invalid_els) v = v_array elif self.array_ok and is_simple_array(v): # Check integer type invalid_els = [e for e in v if not isinstance(e, int)] if invalid_els: self.raise_invalid_elements(invalid_els[:10]) # Check min/max if self.has_min_max: invalid_els = [e for e in v if not (self.min_val <= e <= self.max_val)] if invalid_els: self.raise_invalid_elements(invalid_els[:10]) v = to_scalar_or_list(v) else: # Check int if not isinstance(v, int): # don't let int() cast strings to ints self.raise_invalid_val(v) # Check min/max if self.has_min_max: if not (self.min_val <= v <= self.max_val): self.raise_invalid_val(v) return v class StringValidator(BaseValidator): """ "string": { "description": "A string value. Numbers are converted to strings except for attributes with `strict` set to true.", "requiredOpts": [], "otherOpts": [ "dflt", "noBlank", "strict", "arrayOk", "values" ] }, """ def __init__( self, plotly_name, parent_name, no_blank=False, strict=False, array_ok=False, values=None, **kwargs, ): super(StringValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, **kwargs ) self.no_blank = no_blank self.strict = strict self.array_ok = array_ok self.values = values @staticmethod def to_str_or_unicode_or_none(v): """ Convert a value to a string if it's not None, a string, or a unicode (on Python 2). """ if v is None or isinstance(v, str): return v else: return str(v) def description(self): desc = """\ The '{plotly_name}' property is a string and must be specified as:""".format( plotly_name=self.plotly_name ) if self.no_blank: desc = ( desc + """ - A non-empty string""" ) elif self.values: valid_str = "\n".join( textwrap.wrap( repr(self.values), initial_indent=" " * 12, subsequent_indent=" " * 12, break_on_hyphens=False, ) ) desc = ( desc + """ - One of the following strings: {valid_str}""".format( valid_str=valid_str ) ) else: desc = ( desc + """ - A string""" ) if not self.strict: desc = ( desc + """ - A number that will be converted to a string""" ) if self.array_ok: desc = ( desc + """ - A tuple, list, or one-dimensional numpy array of the above""" ) return desc def validate_coerce(self, v): if v is None: # Pass None through pass elif self.array_ok and is_array(v): # If strict, make sure all elements are strings. if self.strict: invalid_els = [e for e in v if not isinstance(e, str)] if invalid_els: self.raise_invalid_elements(invalid_els) if is_homogeneous_array(v): np = get_module("numpy") # If not strict, let numpy cast elements to strings v = copy_to_readonly_numpy_array(v, kind="U") # Check no_blank if self.no_blank: invalid_els = v[v == ""][:10].tolist() if invalid_els: self.raise_invalid_elements(invalid_els) # Check values if self.values: invalid_inds = np.logical_not(np.isin(v, self.values)) invalid_els = v[invalid_inds][:10].tolist() if invalid_els: self.raise_invalid_elements(invalid_els) elif is_simple_array(v): if not self.strict: v = [StringValidator.to_str_or_unicode_or_none(e) for e in v] # Check no_blank if self.no_blank: invalid_els = [e for e in v if e == ""] if invalid_els: self.raise_invalid_elements(invalid_els) # Check values if self.values: invalid_els = [e for e in v if v not in self.values] if invalid_els: self.raise_invalid_elements(invalid_els) v = to_scalar_or_list(v) else: if self.strict: if not isinstance(v, str): self.raise_invalid_val(v) else: if isinstance(v, str): pass elif isinstance(v, (int, float)): # Convert value to a string v = str(v) else: self.raise_invalid_val(v) if self.no_blank and len(v) == 0: self.raise_invalid_val(v) if self.values and v not in self.values: self.raise_invalid_val(v) return v class ColorValidator(BaseValidator): """ "color": { "description": "A string describing color. Supported formats: - hex (e.g. '#d3d3d3') - rgb (e.g. 'rgb(255, 0, 0)') - rgba (e.g. 'rgb(255, 0, 0, 0.5)') - hsl (e.g. 'hsl(0, 100%, 50%)') - hsv (e.g. 'hsv(0, 100%, 100%)') - named colors(full list: http://www.w3.org/TR/css3-color/#svg-color)", "requiredOpts": [], "otherOpts": [ "dflt", "arrayOk" ] }, """ re_hex = re.compile(r"#([A-Fa-f0-9]{6}|[A-Fa-f0-9]{3})") re_rgb_etc = re.compile(r"(rgb|hsl|hsv)a?\([\d.]+%?(,[\d.]+%?){2,3}\)") re_ddk = re.compile(r"var\(\-\-.*\)") named_colors = [ "aliceblue", "antiquewhite", "aqua", "aquamarine", "azure", "beige", "bisque", "black", "blanchedalmond", "blue", "blueviolet", "brown", "burlywood", "cadetblue", "chartreuse", "chocolate", "coral", "cornflowerblue", "cornsilk", "crimson", "cyan", "darkblue", "darkcyan", "darkgoldenrod", "darkgray", "darkgrey", "darkgreen", "darkkhaki", "darkmagenta", "darkolivegreen", "darkorange", "darkorchid", "darkred", "darksalmon", "darkseagreen", "darkslateblue", "darkslategray", "darkslategrey", "darkturquoise", "darkviolet", "deeppink", "deepskyblue", "dimgray", "dimgrey", "dodgerblue", "firebrick", "floralwhite", "forestgreen", "fuchsia", "gainsboro", "ghostwhite", "gold", "goldenrod", "gray", "grey", "green", "greenyellow", "honeydew", "hotpink", "indianred", "indigo", "ivory", "khaki", "lavender", "lavenderblush", "lawngreen", "lemonchiffon", "lightblue", "lightcoral", "lightcyan", "lightgoldenrodyellow", "lightgray", "lightgrey", "lightgreen", "lightpink", "lightsalmon", "lightseagreen", "lightskyblue", "lightslategray", "lightslategrey", "lightsteelblue", "lightyellow", "lime", "limegreen", "linen", "magenta", "maroon", "mediumaquamarine", "mediumblue", "mediumorchid", "mediumpurple", "mediumseagreen", "mediumslateblue", "mediumspringgreen", "mediumturquoise", "mediumvioletred", "midnightblue", "mintcream", "mistyrose", "moccasin", "navajowhite", "navy", "oldlace", "olive", "olivedrab", "orange", "orangered", "orchid", "palegoldenrod", "palegreen", "paleturquoise", "palevioletred", "papayawhip", "peachpuff", "peru", "pink", "plum", "powderblue", "purple", "red", "rosybrown", "royalblue", "rebeccapurple", "saddlebrown", "salmon", "sandybrown", "seagreen", "seashell", "sienna", "silver", "skyblue", "slateblue", "slategray", "slategrey", "snow", "springgreen", "steelblue", "tan", "teal", "thistle", "tomato", "turquoise", "violet", "wheat", "white", "whitesmoke", "yellow", "yellowgreen", ] def __init__( self, plotly_name, parent_name, array_ok=False, colorscale_path=None, **kwargs ): super(ColorValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, **kwargs ) self.array_ok = array_ok # colorscale_path is the path to the colorscale associated with this # color property, or None if no such colorscale exists. Only colors # with an associated colorscale may take on numeric values self.colorscale_path = colorscale_path def numbers_allowed(self): return self.colorscale_path is not None def description(self): named_clrs_str = "\n".join( textwrap.wrap( ", ".join(self.named_colors), width=79 - 16, initial_indent=" " * 12, subsequent_indent=" " * 12, ) ) valid_color_description = """\ The '{plotly_name}' property is a color and may be specified as: - A hex string (e.g. '#ff0000') - An rgb/rgba string (e.g. 'rgb(255,0,0)') - An hsl/hsla string (e.g. 'hsl(0,100%,50%)') - An hsv/hsva string (e.g. 'hsv(0,100%,100%)') - A named CSS color: {clrs}""".format( plotly_name=self.plotly_name, clrs=named_clrs_str ) if self.colorscale_path: valid_color_description = ( valid_color_description + """ - A number that will be interpreted as a color according to {colorscale_path}""".format( colorscale_path=self.colorscale_path ) ) if self.array_ok: valid_color_description = ( valid_color_description + """ - A list or array of any of the above""" ) return valid_color_description def validate_coerce(self, v, should_raise=True): if v is None: # Pass None through pass elif self.array_ok and is_homogeneous_array(v): v = copy_to_readonly_numpy_array(v) if self.numbers_allowed() and v.dtype.kind in ["u", "i", "f"]: # Numbers are allowed and we have an array of numbers. # All good pass else: validated_v = [self.validate_coerce(e, should_raise=False) for e in v] invalid_els = self.find_invalid_els(v, validated_v) if invalid_els and should_raise: self.raise_invalid_elements(invalid_els) # ### Check that elements have valid colors types ### elif self.numbers_allowed() or invalid_els: v = copy_to_readonly_numpy_array(validated_v, kind="O") else: v = copy_to_readonly_numpy_array(validated_v, kind="U") elif self.array_ok and is_simple_array(v): validated_v = [self.validate_coerce(e, should_raise=False) for e in v] invalid_els = self.find_invalid_els(v, validated_v) if invalid_els and should_raise: self.raise_invalid_elements(invalid_els) else: v = validated_v else: # Validate scalar color validated_v = self.vc_scalar(v) if validated_v is None and should_raise: self.raise_invalid_val(v) v = validated_v return v def find_invalid_els(self, orig, validated, invalid_els=None): """ Helper method to find invalid elements in orig array. Elements are invalid if their corresponding element in the validated array is None. This method handles deeply nested list structures """ if invalid_els is None: invalid_els = [] for orig_el, validated_el in zip(orig, validated): if is_array(orig_el): self.find_invalid_els(orig_el, validated_el, invalid_els) else: if validated_el is None: invalid_els.append(orig_el) return invalid_els def vc_scalar(self, v): """Helper to validate/coerce a scalar color""" return ColorValidator.perform_validate_coerce( v, allow_number=self.numbers_allowed() ) @staticmethod def perform_validate_coerce(v, allow_number=None): """ Validate, coerce, and return a single color value. If input cannot be coerced to a valid color then return None. Parameters ---------- v : number or str Candidate color value allow_number : bool True if numbers are allowed as colors Returns ------- number or str or None """ if isinstance(v, numbers.Number) and allow_number: # If allow_numbers then any number is ok return v elif not isinstance(v, str): # If not allow_numbers then value must be a string return None else: # Remove spaces so regexes don't need to bother with them. v_normalized = v.replace(" ", "").lower() # if ColorValidator.re_hex.fullmatch(v_normalized): if fullmatch(ColorValidator.re_hex, v_normalized): # valid hex color (e.g. #f34ab3) return v elif fullmatch(ColorValidator.re_rgb_etc, v_normalized): # elif ColorValidator.re_rgb_etc.fullmatch(v_normalized): # Valid rgb(a), hsl(a), hsv(a) color # (e.g. rgba(10, 234, 200, 50%) return v elif fullmatch(ColorValidator.re_ddk, v_normalized): # Valid var(--*) DDK theme variable, inspired by CSS syntax # (e.g. var(--accent) ) # DDK will crawl & eval var(-- colors for Graph theming return v elif v_normalized in ColorValidator.named_colors: # Valid named color (e.g. 'coral') return v else: # Not a valid color return None class ColorlistValidator(BaseValidator): """ "colorlist": { "description": "A list of colors. Must be an {array} containing valid colors.", "requiredOpts": [], "otherOpts": [ "dflt" ] } """ def __init__(self, plotly_name, parent_name, **kwargs): super(ColorlistValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, **kwargs ) def description(self): return """\ The '{plotly_name}' property is a colorlist that may be specified as a tuple, list, one-dimensional numpy array, or pandas Series of valid color strings""".format( plotly_name=self.plotly_name ) def validate_coerce(self, v): if v is None: # Pass None through pass elif is_array(v): validated_v = [ ColorValidator.perform_validate_coerce(e, allow_number=False) for e in v ] invalid_els = [ el for el, validated_el in zip(v, validated_v) if validated_el is None ] if invalid_els: self.raise_invalid_elements(invalid_els) v = to_scalar_or_list(v) else: self.raise_invalid_val(v) return v class ColorscaleValidator(BaseValidator): """ "colorscale": { "description": "A Plotly colorscale either picked by a name: (any of Greys, YlGnBu, Greens, YlOrRd, Bluered, RdBu, Reds, Blues, Picnic, Rainbow, Portland, Jet, Hot, Blackbody, Earth, Electric, Viridis) customized as an {array} of 2-element {arrays} where the first element is the normalized color level value (starting at *0* and ending at *1*), and the second item is a valid color string.", "requiredOpts": [], "otherOpts": [ "dflt" ] }, """ def __init__(self, plotly_name, parent_name, **kwargs): super(ColorscaleValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, **kwargs ) # named colorscales initialized on first use self._named_colorscales = None @property def named_colorscales(self): if self._named_colorscales is None: import inspect import itertools from plotly import colors colorscale_members = itertools.chain( inspect.getmembers(colors.sequential), inspect.getmembers(colors.diverging), inspect.getmembers(colors.cyclical), ) self._named_colorscales = { c[0].lower(): c[1] for c in colorscale_members if isinstance(c, tuple) and len(c) == 2 and isinstance(c[0], str) and isinstance(c[1], list) and not c[0].endswith("_r") and not c[0].startswith("_") } return self._named_colorscales def description(self): colorscales_str = "\n".join( textwrap.wrap( repr(sorted(list(self.named_colorscales))), initial_indent=" " * 12, subsequent_indent=" " * 13, break_on_hyphens=False, width=80, ) ) desc = """\ The '{plotly_name}' property is a colorscale and may be specified as: - A list of colors that will be spaced evenly to create the colorscale. Many predefined colorscale lists are included in the sequential, diverging, and cyclical modules in the plotly.colors package. - A list of 2-element lists where the first element is the normalized color level value (starting at 0 and ending at 1), and the second item is a valid color string. (e.g. [[0, 'green'], [0.5, 'red'], [1.0, 'rgb(0, 0, 255)']]) - One of the following named colorscales: {colorscales_str}. Appending '_r' to a named colorscale reverses it. """.format( plotly_name=self.plotly_name, colorscales_str=colorscales_str ) return desc def validate_coerce(self, v): v_valid = False if v is None: v_valid = True elif isinstance(v, str): v_lower = v.lower() if v_lower in self.named_colorscales: # Convert to color list v = self.named_colorscales[v_lower] v_valid = True elif v_lower.endswith("_r") and v_lower[:-2] in self.named_colorscales: v = self.named_colorscales[v_lower[:-2]][::-1] v_valid = True # if v_valid: # Convert to list of lists colorscale d = len(v) - 1 v = [[(1.0 * i) / (1.0 * d), x] for i, x in enumerate(v)] elif is_array(v) and len(v) > 0: # If firset element is a string, treat as colorsequence if isinstance(v[0], str): invalid_els = [ e for e in v if ColorValidator.perform_validate_coerce(e) is None ] if len(invalid_els) == 0: v_valid = True # Convert to list of lists colorscale d = len(v) - 1 v = [[(1.0 * i) / (1.0 * d), x] for i, x in enumerate(v)] else: invalid_els = [ e for e in v if ( not is_array(e) or len(e) != 2 or not isinstance(e[0], numbers.Number) or not (0 <= e[0] <= 1) or not isinstance(e[1], str) or ColorValidator.perform_validate_coerce(e[1]) is None ) ] if len(invalid_els) == 0: v_valid = True # Convert to list of lists v = [ [e[0], ColorValidator.perform_validate_coerce(e[1])] for e in v ] if not v_valid: self.raise_invalid_val(v) return v def present(self, v): # Return-type must be immutable if v is None: return None elif isinstance(v, str): return v else: return tuple([tuple(e) for e in v]) class AngleValidator(BaseValidator): """ "angle": { "description": "A number (in degree) between -180 and 180.", "requiredOpts": [], "otherOpts": [ "dflt", "arrayOk" ] }, """ def __init__(self, plotly_name, parent_name, array_ok=False, **kwargs): super(AngleValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, **kwargs ) self.array_ok = array_ok def description(self): desc = """\ The '{plotly_name}' property is a angle (in degrees) that may be specified as a number between -180 and 180{array_ok}. Numeric values outside this range are converted to the equivalent value (e.g. 270 is converted to -90). """.format( plotly_name=self.plotly_name, array_ok=", or a list, numpy array or other iterable thereof" if self.array_ok else "", ) return desc def validate_coerce(self, v): if v is None: # Pass None through pass elif self.array_ok and is_homogeneous_array(v): try: v_array = copy_to_readonly_numpy_array(v, force_numeric=True) except (ValueError, TypeError, OverflowError): self.raise_invalid_val(v) v = v_array # Always numeric numpy array # Normalize v onto the interval [-180, 180) v = (v + 180) % 360 - 180 elif self.array_ok and is_simple_array(v): # Check numeric invalid_els = [e for e in v if not isinstance(e, numbers.Number)] if invalid_els: self.raise_invalid_elements(invalid_els[:10]) v = [(x + 180) % 360 - 180 for x in to_scalar_or_list(v)] elif not isinstance(v, numbers.Number): self.raise_invalid_val(v) else: # Normalize v onto the interval [-180, 180) v = (v + 180) % 360 - 180 return v class SubplotidValidator(BaseValidator): """ "subplotid": { "description": "An id string of a subplot type (given by dflt), optionally followed by an integer >1. e.g. if dflt='geo', we can have 'geo', 'geo2', 'geo3', ...", "requiredOpts": [ "dflt" ], "otherOpts": [ "regex" ] } """ def __init__(self, plotly_name, parent_name, dflt=None, regex=None, **kwargs): if dflt is None and regex is None: raise ValueError("One or both of regex and deflt must be specified") super(SubplotidValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, **kwargs ) if dflt is not None: self.base = dflt else: # e.g. regex == '/^y([2-9]|[1-9][0-9]+)?$/' self.base = re.match(r"/\^(\w+)", regex).group(1) self.regex = self.base + r"(\d*)" def description(self): desc = """\ The '{plotly_name}' property is an identifier of a particular subplot, of type '{base}', that may be specified as the string '{base}' optionally followed by an integer >= 1 (e.g. '{base}', '{base}1', '{base}2', '{base}3', etc.) """.format( plotly_name=self.plotly_name, base=self.base ) return desc def validate_coerce(self, v): if v is None: pass elif not isinstance(v, str): self.raise_invalid_val(v) else: # match = re.fullmatch(self.regex, v) match = fullmatch(self.regex, v) if not match: is_valid = False else: digit_str = match.group(1) if len(digit_str) > 0 and int(digit_str) == 0: is_valid = False elif len(digit_str) > 0 and int(digit_str) == 1: # Remove 1 suffix (e.g. x1 -> x) v = self.base is_valid = True else: is_valid = True if not is_valid: self.raise_invalid_val(v) return v class FlaglistValidator(BaseValidator): """ "flaglist": { "description": "A string representing a combination of flags (order does not matter here). Combine any of the available `flags` with *+*. (e.g. ('lines+markers')). Values in `extras` cannot be combined.", "requiredOpts": [ "flags" ], "otherOpts": [ "dflt", "extras", "arrayOk" ] }, """ def __init__( self, plotly_name, parent_name, flags, extras=None, array_ok=False, **kwargs ): super(FlaglistValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, **kwargs ) self.flags = flags self.extras = extras if extras is not None else [] self.array_ok = array_ok def description(self): desc = ( """\ The '{plotly_name}' property is a flaglist and may be specified as a string containing:""" ).format(plotly_name=self.plotly_name) # Flags desc = ( desc + ( """ - Any combination of {flags} joined with '+' characters (e.g. '{eg_flag}')""" ).format(flags=self.flags, eg_flag="+".join(self.flags[:2])) ) # Extras if self.extras: desc = ( desc + ( """ OR exactly one of {extras} (e.g. '{eg_extra}')""" ).format(extras=self.extras, eg_extra=self.extras[-1]) ) if self.array_ok: desc = ( desc + """ - A list or array of the above""" ) return desc def vc_scalar(self, v): if isinstance(v, str): v = v.strip() if v in self.extras: return v if not isinstance(v, str): return None # To be generous we accept flags separated on plus ('+'), # or comma (',') and we accept whitespace around the flags split_vals = [e.strip() for e in re.split("[,+]", v)] # Are all flags valid names? if all(f in self.flags for f in split_vals): return "+".join(split_vals) else: return None def validate_coerce(self, v): if v is None: # Pass None through pass elif self.array_ok and is_array(v): # Coerce individual strings validated_v = [self.vc_scalar(e) for e in v] invalid_els = [ el for el, validated_el in zip(v, validated_v) if validated_el is None ] if invalid_els: self.raise_invalid_elements(invalid_els) if is_homogeneous_array(v): v = copy_to_readonly_numpy_array(validated_v, kind="U") else: v = to_scalar_or_list(v) else: validated_v = self.vc_scalar(v) if validated_v is None: self.raise_invalid_val(v) v = validated_v return v class AnyValidator(BaseValidator): """ "any": { "description": "Any type.", "requiredOpts": [], "otherOpts": [ "dflt", "values", "arrayOk" ] }, """ def __init__(self, plotly_name, parent_name, values=None, array_ok=False, **kwargs): super(AnyValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, **kwargs ) self.values = values self.array_ok = array_ok def description(self): desc = """\ The '{plotly_name}' property accepts values of any type """.format( plotly_name=self.plotly_name ) return desc def validate_coerce(self, v): if v is None: # Pass None through pass elif self.array_ok and is_homogeneous_array(v): v = copy_to_readonly_numpy_array(v, kind="O") elif self.array_ok and is_simple_array(v): v = to_scalar_or_list(v) return v class InfoArrayValidator(BaseValidator): """ "info_array": { "description": "An {array} of plot information.", "requiredOpts": [ "items" ], "otherOpts": [ "dflt", "freeLength", "dimensions" ] } """ def __init__( self, plotly_name, parent_name, items, free_length=None, dimensions=None, **kwargs, ): super(InfoArrayValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, **kwargs ) self.items = items self.dimensions = dimensions if dimensions else 1 self.free_length = free_length # Instantiate validators for each info array element self.item_validators = [] info_array_items = self.items if isinstance(self.items, list) else [self.items] for i, item in enumerate(info_array_items): element_name = "{name}[{i}]".format(name=plotly_name, i=i) item_validator = InfoArrayValidator.build_validator( item, element_name, parent_name ) self.item_validators.append(item_validator) def description(self): # Cases # 1) self.items is array, self.dimensions is 1 # a) free_length=True # b) free_length=False # 2) self.items is array, self.dimensions is 2 # (requires free_length=True) # 3) self.items is scalar (requires free_length=True) # a) dimensions=1 # b) dimensions=2 # # dimensions can be set to '1-2' to indicate the both are accepted # desc = """\ The '{plotly_name}' property is an info array that may be specified as:\ """.format( plotly_name=self.plotly_name ) if isinstance(self.items, list): # ### Case 1 ### if self.dimensions in (1, "1-2"): upto = " up to" if self.free_length and self.dimensions == 1 else "" desc += """ * a list or tuple of{upto} {N} elements where:\ """.format( upto=upto, N=len(self.item_validators) ) for i, item_validator in enumerate(self.item_validators): el_desc = item_validator.description().strip() desc = ( desc + """ ({i}) {el_desc}""".format( i=i, el_desc=el_desc ) ) # ### Case 2 ### if self.dimensions in ("1-2", 2): assert self.free_length desc += """ * a 2D list where:""" for i, item_validator in enumerate(self.item_validators): # Update name for 2d orig_name = item_validator.plotly_name item_validator.plotly_name = "{name}[i][{i}]".format( name=self.plotly_name, i=i ) el_desc = item_validator.description().strip() desc = ( desc + """ ({i}) {el_desc}""".format( i=i, el_desc=el_desc ) ) item_validator.plotly_name = orig_name else: # ### Case 3 ### assert self.free_length item_validator = self.item_validators[0] orig_name = item_validator.plotly_name if self.dimensions in (1, "1-2"): item_validator.plotly_name = "{name}[i]".format(name=self.plotly_name) el_desc = item_validator.description().strip() desc += """ * a list of elements where: {el_desc} """.format( el_desc=el_desc ) if self.dimensions in ("1-2", 2): item_validator.plotly_name = "{name}[i][j]".format( name=self.plotly_name ) el_desc = item_validator.description().strip() desc += """ * a 2D list where: {el_desc} """.format( el_desc=el_desc ) item_validator.plotly_name = orig_name return desc @staticmethod def build_validator(validator_info, plotly_name, parent_name): datatype = validator_info["valType"] # type: str validator_classname = datatype.title().replace("_", "") + "Validator" validator_class = eval(validator_classname) kwargs = { k: validator_info[k] for k in validator_info if k not in ["valType", "description", "role"] } return validator_class( plotly_name=plotly_name, parent_name=parent_name, **kwargs ) def validate_element_with_indexed_name(self, val, validator, inds): """ Helper to add indexes to a validator's name, call validate_coerce on a value, then restore the original validator name. This makes sure that if a validation error message is raised, the property name the user sees includes the index(es) of the offending element. Parameters ---------- val: A value to be validated validator A validator inds List of one or more non-negative integers that represent the nested index of the value being validated Returns ------- val validated value Raises ------ ValueError if val fails validation """ orig_name = validator.plotly_name new_name = self.plotly_name for i in inds: new_name += "[" + str(i) + "]" validator.plotly_name = new_name try: val = validator.validate_coerce(val) finally: validator.plotly_name = orig_name return val def validate_coerce(self, v): if v is None: # Pass None through return None elif not is_array(v): self.raise_invalid_val(v) # Save off original v value to use in error reporting orig_v = v # Convert everything into nested lists # This way we don't need to worry about nested numpy arrays v = to_scalar_or_list(v) is_v_2d = v and is_array(v[0]) if is_v_2d and self.dimensions in ("1-2", 2): if is_array(self.items): # e.g. 2D list as parcoords.dimensions.constraintrange # check that all items are there for each nested element for i, row in enumerate(v): # Check row length if not is_array(row) or len(row) != len(self.items): self.raise_invalid_val(orig_v[i], [i]) for j, validator in enumerate(self.item_validators): row[j] = self.validate_element_with_indexed_name( v[i][j], validator, [i, j] ) else: # e.g. 2D list as layout.grid.subplots # check that all elements match individual validator validator = self.item_validators[0] for i, row in enumerate(v): if not is_array(row): self.raise_invalid_val(orig_v[i], [i]) for j, el in enumerate(row): row[j] = self.validate_element_with_indexed_name( el, validator, [i, j] ) elif v and self.dimensions == 2: # e.g. 1D list passed as layout.grid.subplots self.raise_invalid_val(orig_v[0], [0]) elif not is_array(self.items): # e.g. 1D list passed as layout.grid.xaxes validator = self.item_validators[0] for i, el in enumerate(v): v[i] = self.validate_element_with_indexed_name(el, validator, [i]) elif not self.free_length and len(v) != len(self.item_validators): # e.g. 3 element list as layout.xaxis.range self.raise_invalid_val(orig_v) elif self.free_length and len(v) > len(self.item_validators): # e.g. 4 element list as layout.updatemenu.button.args self.raise_invalid_val(orig_v) else: # We have a 1D array of the correct length for i, (el, validator) in enumerate(zip(v, self.item_validators)): # Validate coerce elements v[i] = validator.validate_coerce(el) return v def present(self, v): if v is None: return None else: if ( self.dimensions == 2 or self.dimensions == "1-2" and v and is_array(v[0]) ): # 2D case v = copy.deepcopy(v) for row in v: for i, (el, validator) in enumerate(zip(row, self.item_validators)): row[i] = validator.present(el) return tuple(tuple(row) for row in v) else: # 1D case v = copy.copy(v) # Call present on each of the item validators for i, (el, validator) in enumerate(zip(v, self.item_validators)): # Validate coerce elements v[i] = validator.present(el) # Return tuple form of return tuple(v) class LiteralValidator(BaseValidator): """ Validator for readonly literal values """ def __init__(self, plotly_name, parent_name, val, **kwargs): super(LiteralValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, **kwargs ) self.val = val def validate_coerce(self, v): if v != self.val: raise ValueError( """\ The '{plotly_name}' property of {parent_name} is read-only""".format( plotly_name=self.plotly_name, parent_name=self.parent_name ) ) else: return v class DashValidator(EnumeratedValidator): """ Special case validator for handling dash properties that may be specified as lists of dash lengths. These are not currently specified in the schema. "dash": { "valType": "string", "values": [ "solid", "dot", "dash", "longdash", "dashdot", "longdashdot" ], "dflt": "solid", "role": "style", "editType": "style", "description": "Sets the dash style of lines. Set to a dash type string (*solid*, *dot*, *dash*, *longdash*, *dashdot*, or *longdashdot*) or a dash length list in px (eg *5px,10px,2px,2px*)." }, """ def __init__(self, plotly_name, parent_name, values, **kwargs): # Add regex to handle dash length lists dash_list_regex = r"/^\d+(\.\d+)?(px|%)?((,|\s)\s*\d+(\.\d+)?(px|%)?)*$/" values = values + [dash_list_regex] # Call EnumeratedValidator superclass super(DashValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, values=values, **kwargs ) def description(self): # Separate regular values from regular expressions enum_vals = [] enum_regexs = [] for v, regex in zip(self.values, self.val_regexs): if regex is not None: enum_regexs.append(regex.pattern) else: enum_vals.append(v) desc = """\ The '{name}' property is an enumeration that may be specified as:""".format( name=self.plotly_name ) if enum_vals: enum_vals_str = "\n".join( textwrap.wrap( repr(enum_vals), initial_indent=" " * 12, subsequent_indent=" " * 12, break_on_hyphens=False, width=80, ) ) desc = ( desc + """ - One of the following dash styles: {enum_vals_str}""".format( enum_vals_str=enum_vals_str ) ) desc = ( desc + """ - A string containing a dash length list in pixels or percentages (e.g. '5px 10px 2px 2px', '5, 10, 2, 2', '10% 20% 40%', etc.) """ ) return desc class ImageUriValidator(BaseValidator): _PIL = None try: _PIL = import_module("PIL") except ImportError: pass def __init__(self, plotly_name, parent_name, **kwargs): super(ImageUriValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, **kwargs ) def description(self): desc = """\ The '{plotly_name}' property is an image URI that may be specified as: - A remote image URI string (e.g. 'http://www.somewhere.com/image.png') - A data URI image string (e.g. '') - A PIL.Image.Image object which will be immediately converted to a data URI image string See http://pillow.readthedocs.io/en/latest/reference/Image.html """.format( plotly_name=self.plotly_name ) return desc def validate_coerce(self, v): if v is None: pass elif isinstance(v, str): # Future possibilities: # - Detect filesystem system paths and convert to URI # - Validate either url or data uri pass elif self._PIL and isinstance(v, self._PIL.Image.Image): # Convert PIL image to png data uri string v = self.pil_image_to_uri(v) else: self.raise_invalid_val(v) return v @staticmethod def pil_image_to_uri(v): in_mem_file = io.BytesIO() v.save(in_mem_file, format="PNG") in_mem_file.seek(0) img_bytes = in_mem_file.read() base64_encoded_result_bytes = base64.b64encode(img_bytes) base64_encoded_result_str = base64_encoded_result_bytes.decode("ascii") v = "data:image/png;base64,{base64_encoded_result_str}".format( base64_encoded_result_str=base64_encoded_result_str ) return v class CompoundValidator(BaseValidator): def __init__(self, plotly_name, parent_name, data_class_str, data_docs, **kwargs): super(CompoundValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, **kwargs ) # Save element class string self.data_class_str = data_class_str self._data_class = None self.data_docs = data_docs self.module_str = CompoundValidator.compute_graph_obj_module_str( self.data_class_str, parent_name ) @staticmethod def compute_graph_obj_module_str(data_class_str, parent_name): if parent_name == "frame" and data_class_str in ["Data", "Layout"]: # Special case. There are no graph_objs.frame.Data or # graph_objs.frame.Layout classes. These are remapped to # graph_objs.Data and graph_objs.Layout parent_parts = parent_name.split(".") module_str = ".".join(["plotly.graph_objs"] + parent_parts[1:]) elif parent_name == "layout.template" and data_class_str == "Layout": # Remap template's layout to regular layout module_str = "plotly.graph_objs" elif "layout.template.data" in parent_name: # Remap template's traces to regular traces parent_name = parent_name.replace("layout.template.data.", "") if parent_name: module_str = "plotly.graph_objs." + parent_name else: module_str = "plotly.graph_objs" elif parent_name: module_str = "plotly.graph_objs." + parent_name else: module_str = "plotly.graph_objs" return module_str @property def data_class(self): if self._data_class is None: module = import_module(self.module_str) self._data_class = getattr(module, self.data_class_str) return self._data_class def description(self): desc = ( """\ The '{plotly_name}' property is an instance of {class_str} that may be specified as: - An instance of :class:`{module_str}.{class_str}` - A dict of string/value properties that will be passed to the {class_str} constructor Supported dict properties: {constructor_params_str}""" ).format( plotly_name=self.plotly_name, class_str=self.data_class_str, module_str=self.module_str, constructor_params_str=self.data_docs, ) return desc def validate_coerce(self, v, skip_invalid=False, _validate=True): if v is None: v = self.data_class() elif isinstance(v, dict): v = self.data_class(v, skip_invalid=skip_invalid, _validate=_validate) elif isinstance(v, self.data_class): # Copy object v = self.data_class(v) else: if skip_invalid: v = self.data_class() else: self.raise_invalid_val(v) v._plotly_name = self.plotly_name return v def present(self, v): # Return compound object as-is return v class TitleValidator(CompoundValidator): """ This is a special validator to allow compound title properties (e.g. layout.title, layout.xaxis.title, etc.) to be set as strings or numbers. These strings are mapped to the 'text' property of the compound validator. """ def __init__(self, *args, **kwargs): super(TitleValidator, self).__init__(*args, **kwargs) def validate_coerce(self, v, skip_invalid=False): if isinstance(v, (str, int, float)): v = {"text": v} return super(TitleValidator, self).validate_coerce(v, skip_invalid=skip_invalid) class CompoundArrayValidator(BaseValidator): def __init__(self, plotly_name, parent_name, data_class_str, data_docs, **kwargs): super(CompoundArrayValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, **kwargs ) # Save element class string self.data_class_str = data_class_str self._data_class = None self.data_docs = data_docs self.module_str = CompoundValidator.compute_graph_obj_module_str( self.data_class_str, parent_name ) def description(self): desc = ( """\ The '{plotly_name}' property is a tuple of instances of {class_str} that may be specified as: - A list or tuple of instances of {module_str}.{class_str} - A list or tuple of dicts of string/value properties that will be passed to the {class_str} constructor Supported dict properties: {constructor_params_str}""" ).format( plotly_name=self.plotly_name, class_str=self.data_class_str, module_str=self.module_str, constructor_params_str=self.data_docs, ) return desc @property def data_class(self): if self._data_class is None: module = import_module(self.module_str) self._data_class = getattr(module, self.data_class_str) return self._data_class def validate_coerce(self, v, skip_invalid=False): if v is None: v = [] elif isinstance(v, (list, tuple)): res = [] invalid_els = [] for v_el in v: if isinstance(v_el, self.data_class): res.append(self.data_class(v_el)) elif isinstance(v_el, dict): res.append(self.data_class(v_el, skip_invalid=skip_invalid)) else: if skip_invalid: res.append(self.data_class()) else: res.append(None) invalid_els.append(v_el) if invalid_els: self.raise_invalid_elements(invalid_els) v = to_scalar_or_list(res) else: if skip_invalid: v = [] else: self.raise_invalid_val(v) return v def present(self, v): # Return compound object as tuple return tuple(v) class BaseDataValidator(BaseValidator): def __init__( self, class_strs_map, plotly_name, parent_name, set_uid=False, **kwargs ): super(BaseDataValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, **kwargs ) self.class_strs_map = class_strs_map self._class_map = {} self.set_uid = set_uid def description(self): trace_types = str(list(self.class_strs_map.keys())) trace_types_wrapped = "\n".join( textwrap.wrap( trace_types, initial_indent=" One of: ", subsequent_indent=" " * 21, width=79 - 12, ) ) desc = ( """\ The '{plotly_name}' property is a tuple of trace instances that may be specified as: - A list or tuple of trace instances (e.g. [Scatter(...), Bar(...)]) - A single trace instance (e.g. Scatter(...), Bar(...), etc.) - A list or tuple of dicts of string/value properties where: - The 'type' property specifies the trace type {trace_types} - All remaining properties are passed to the constructor of the specified trace type (e.g. [{{'type': 'scatter', ...}}, {{'type': 'bar, ...}}])""" ).format(plotly_name=self.plotly_name, trace_types=trace_types_wrapped) return desc def get_trace_class(self, trace_name): # Import trace classes if trace_name not in self._class_map: trace_module = import_module("plotly.graph_objs") trace_class_name = self.class_strs_map[trace_name] self._class_map[trace_name] = getattr(trace_module, trace_class_name) return self._class_map[trace_name] def validate_coerce(self, v, skip_invalid=False, _validate=True): from plotly.basedatatypes import BaseTraceType # Import Histogram2dcontour, this is the deprecated name of the # Histogram2dContour trace. from plotly.graph_objs import Histogram2dcontour if v is None: v = [] else: if not isinstance(v, (list, tuple)): v = [v] res = [] invalid_els = [] for v_el in v: if isinstance(v_el, BaseTraceType): if isinstance(v_el, Histogram2dcontour): v_el = dict(type="histogram2dcontour", **v_el._props) else: v_el = v_el._props if isinstance(v_el, dict): type_in_v_el = "type" in v_el trace_type = v_el.pop("type", "scatter") if trace_type not in self.class_strs_map: if skip_invalid: # Treat as scatter trace trace = self.get_trace_class("scatter")( skip_invalid=skip_invalid, _validate=_validate, **v_el ) res.append(trace) else: res.append(None) invalid_els.append(v_el) else: trace = self.get_trace_class(trace_type)( skip_invalid=skip_invalid, _validate=_validate, **v_el ) res.append(trace) if type_in_v_el: # Restore type in v_el v_el["type"] = trace_type else: if skip_invalid: # Add empty scatter trace trace = self.get_trace_class("scatter")() res.append(trace) else: res.append(None) invalid_els.append(v_el) if invalid_els: self.raise_invalid_elements(invalid_els) v = to_scalar_or_list(res) # Set new UIDs if self.set_uid: for trace in v: trace.uid = str(uuid.uuid4()) return v class BaseTemplateValidator(CompoundValidator): def __init__(self, plotly_name, parent_name, data_class_str, data_docs, **kwargs): super(BaseTemplateValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, data_class_str=data_class_str, data_docs=data_docs, **kwargs, ) def description(self): compound_description = super(BaseTemplateValidator, self).description() compound_description += """ - The name of a registered template where current registered templates are stored in the plotly.io.templates configuration object. The names of all registered templates can be retrieved with: >>> import plotly.io as pio >>> list(pio.templates) # doctest: +ELLIPSIS ['ggplot2', 'seaborn', 'simple_white', 'plotly', 'plotly_white', ...] - A string containing multiple registered template names, joined on '+' characters (e.g. 'template1+template2'). In this case the resulting template is computed by merging together the collection of registered templates""" return compound_description def validate_coerce(self, v, skip_invalid=False): import plotly.io as pio try: # Check if v is a template identifier # (could be any hashable object) if v in pio.templates: return copy.deepcopy(pio.templates[v]) # Otherwise, if v is a string, check to see if it consists of # multiple template names joined on '+' characters elif isinstance(v, str): template_names = v.split("+") if all([name in pio.templates for name in template_names]): return pio.templates.merge_templates(*template_names) except TypeError: # v is un-hashable pass # Check for empty template if v == {} or isinstance(v, self.data_class) and v.to_plotly_json() == {}: # Replace empty template with {'data': {'scatter': [{}]}} so that we can # tell the difference between an un-initialized template and a template # explicitly set to empty. return self.data_class(data_scatter=[{}]) return super(BaseTemplateValidator, self).validate_coerce( v, skip_invalid=skip_invalid )