from plotly.basedatatypes import BaseTraceType as _BaseTraceType import copy as _copy class Scatter(_BaseTraceType): # class properties # -------------------- _parent_path_str = "" _path_str = "scatter" _valid_props = { "alignmentgroup", "cliponaxis", "connectgaps", "customdata", "customdatasrc", "dx", "dy", "error_x", "error_y", "fill", "fillcolor", "fillpattern", "groupnorm", "hoverinfo", "hoverinfosrc", "hoverlabel", "hoveron", "hovertemplate", "hovertemplatesrc", "hovertext", "hovertextsrc", "ids", "idssrc", "legend", "legendgroup", "legendgrouptitle", "legendrank", "legendwidth", "line", "marker", "meta", "metasrc", "mode", "name", "offsetgroup", "opacity", "orientation", "selected", "selectedpoints", "showlegend", "stackgaps", "stackgroup", "stream", "text", "textfont", "textposition", "textpositionsrc", "textsrc", "texttemplate", "texttemplatesrc", "type", "uid", "uirevision", "unselected", "visible", "x", "x0", "xaxis", "xcalendar", "xhoverformat", "xperiod", "xperiod0", "xperiodalignment", "xsrc", "y", "y0", "yaxis", "ycalendar", "yhoverformat", "yperiod", "yperiod0", "yperiodalignment", "ysrc", } # alignmentgroup # -------------- @property def alignmentgroup(self): """ Set several traces linked to the same position axis or matching axes to the same alignmentgroup. This controls whether bars compute their positional range dependently or independently. The 'alignmentgroup' property is a string and must be specified as: - A string - A number that will be converted to a string Returns ------- str """ return self["alignmentgroup"] @alignmentgroup.setter def alignmentgroup(self, val): self["alignmentgroup"] = val # cliponaxis # ---------- @property def cliponaxis(self): """ Determines whether or not markers and text nodes are clipped about the subplot axes. To show markers and text nodes above axis lines and tick labels, make sure to set `xaxis.layer` and `yaxis.layer` to *below traces*. The 'cliponaxis' property must be specified as a bool (either True, or False) Returns ------- bool """ return self["cliponaxis"] @cliponaxis.setter def cliponaxis(self, val): self["cliponaxis"] = val # connectgaps # ----------- @property def connectgaps(self): """ Determines whether or not gaps (i.e. {nan} or missing values) in the provided data arrays are connected. The 'connectgaps' property must be specified as a bool (either True, or False) Returns ------- bool """ return self["connectgaps"] @connectgaps.setter def connectgaps(self, val): self["connectgaps"] = val # customdata # ---------- @property def customdata(self): """ Assigns extra data each datum. This may be useful when listening to hover, click and selection events. Note that, "scatter" traces also appends customdata items in the markers DOM elements The 'customdata' property is an array that may be specified as a tuple, list, numpy array, or pandas Series Returns ------- numpy.ndarray """ return self["customdata"] @customdata.setter def customdata(self, val): self["customdata"] = val # customdatasrc # ------------- @property def customdatasrc(self): """ Sets the source reference on Chart Studio Cloud for `customdata`. The 'customdatasrc' property must be specified as a string or as a plotly.grid_objs.Column object Returns ------- str """ return self["customdatasrc"] @customdatasrc.setter def customdatasrc(self, val): self["customdatasrc"] = val # dx # -- @property def dx(self): """ Sets the x coordinate step. See `x0` for more info. The 'dx' property is a number and may be specified as: - An int or float Returns ------- int|float """ return self["dx"] @dx.setter def dx(self, val): self["dx"] = val # dy # -- @property def dy(self): """ Sets the y coordinate step. See `y0` for more info. The 'dy' property is a number and may be specified as: - An int or float Returns ------- int|float """ return self["dy"] @dy.setter def dy(self, val): self["dy"] = val # error_x # ------- @property def error_x(self): """ The 'error_x' property is an instance of ErrorX that may be specified as: - An instance of :class:`plotly.graph_objs.scatter.ErrorX` - A dict of string/value properties that will be passed to the ErrorX constructor Supported dict properties: array Sets the data corresponding the length of each error bar. Values are plotted relative to the underlying data. arrayminus Sets the data corresponding the length of each error bar in the bottom (left) direction for vertical (horizontal) bars Values are plotted relative to the underlying data. arrayminussrc Sets the source reference on Chart Studio Cloud for `arrayminus`. arraysrc Sets the source reference on Chart Studio Cloud for `array`. color Sets the stoke color of the error bars. copy_ystyle symmetric Determines whether or not the error bars have the same length in both direction (top/bottom for vertical bars, left/right for horizontal bars. thickness Sets the thickness (in px) of the error bars. traceref tracerefminus type Determines the rule used to generate the error bars. If *constant`, the bar lengths are of a constant value. Set this constant in `value`. If "percent", the bar lengths correspond to a percentage of underlying data. Set this percentage in `value`. If "sqrt", the bar lengths correspond to the square of the underlying data. If "data", the bar lengths are set with data set `array`. value Sets the value of either the percentage (if `type` is set to "percent") or the constant (if `type` is set to "constant") corresponding to the lengths of the error bars. valueminus Sets the value of either the percentage (if `type` is set to "percent") or the constant (if `type` is set to "constant") corresponding to the lengths of the error bars in the bottom (left) direction for vertical (horizontal) bars visible Determines whether or not this set of error bars is visible. width Sets the width (in px) of the cross-bar at both ends of the error bars. Returns ------- plotly.graph_objs.scatter.ErrorX """ return self["error_x"] @error_x.setter def error_x(self, val): self["error_x"] = val # error_y # ------- @property def error_y(self): """ The 'error_y' property is an instance of ErrorY that may be specified as: - An instance of :class:`plotly.graph_objs.scatter.ErrorY` - A dict of string/value properties that will be passed to the ErrorY constructor Supported dict properties: array Sets the data corresponding the length of each error bar. Values are plotted relative to the underlying data. arrayminus Sets the data corresponding the length of each error bar in the bottom (left) direction for vertical (horizontal) bars Values are plotted relative to the underlying data. arrayminussrc Sets the source reference on Chart Studio Cloud for `arrayminus`. arraysrc Sets the source reference on Chart Studio Cloud for `array`. color Sets the stoke color of the error bars. symmetric Determines whether or not the error bars have the same length in both direction (top/bottom for vertical bars, left/right for horizontal bars. thickness Sets the thickness (in px) of the error bars. traceref tracerefminus type Determines the rule used to generate the error bars. If *constant`, the bar lengths are of a constant value. Set this constant in `value`. If "percent", the bar lengths correspond to a percentage of underlying data. Set this percentage in `value`. If "sqrt", the bar lengths correspond to the square of the underlying data. If "data", the bar lengths are set with data set `array`. value Sets the value of either the percentage (if `type` is set to "percent") or the constant (if `type` is set to "constant") corresponding to the lengths of the error bars. valueminus Sets the value of either the percentage (if `type` is set to "percent") or the constant (if `type` is set to "constant") corresponding to the lengths of the error bars in the bottom (left) direction for vertical (horizontal) bars visible Determines whether or not this set of error bars is visible. width Sets the width (in px) of the cross-bar at both ends of the error bars. Returns ------- plotly.graph_objs.scatter.ErrorY """ return self["error_y"] @error_y.setter def error_y(self, val): self["error_y"] = val # fill # ---- @property def fill(self): """ Sets the area to fill with a solid color. Defaults to "none" unless this trace is stacked, then it gets "tonexty" ("tonextx") if `orientation` is "v" ("h") Use with `fillcolor` if not "none". "tozerox" and "tozeroy" fill to x=0 and y=0 respectively. "tonextx" and "tonexty" fill between the endpoints of this trace and the endpoints of the trace before it, connecting those endpoints with straight lines (to make a stacked area graph); if there is no trace before it, they behave like "tozerox" and "tozeroy". "toself" connects the endpoints of the trace (or each segment of the trace if it has gaps) into a closed shape. "tonext" fills the space between two traces if one completely encloses the other (eg consecutive contour lines), and behaves like "toself" if there is no trace before it. "tonext" should not be used if one trace does not enclose the other. Traces in a `stackgroup` will only fill to (or be filled to) other traces in the same group. With multiple `stackgroup`s or some traces stacked and some not, if fill- linked traces are not already consecutive, the later ones will be pushed down in the drawing order. The 'fill' property is an enumeration that may be specified as: - One of the following enumeration values: ['none', 'tozeroy', 'tozerox', 'tonexty', 'tonextx', 'toself', 'tonext'] Returns ------- Any """ return self["fill"] @fill.setter def fill(self, val): self["fill"] = val # fillcolor # --------- @property def fillcolor(self): """ Sets the fill color. Defaults to a half-transparent variant of the line color, marker color, or marker line color, whichever is available. The 'fillcolor' property is a color and may be specified as: - A hex string (e.g. '#ff0000') - An rgb/rgba string (e.g. 'rgb(255,0,0)') - An hsl/hsla string (e.g. 'hsl(0,100%,50%)') - An hsv/hsva string (e.g. 'hsv(0,100%,100%)') - A named CSS color: aliceblue, antiquewhite, aqua, aquamarine, azure, beige, bisque, black, blanchedalmond, blue, blueviolet, brown, burlywood, cadetblue, chartreuse, chocolate, coral, cornflowerblue, cornsilk, crimson, cyan, darkblue, darkcyan, darkgoldenrod, darkgray, darkgrey, darkgreen, darkkhaki, darkmagenta, darkolivegreen, darkorange, darkorchid, darkred, darksalmon, darkseagreen, darkslateblue, darkslategray, darkslategrey, darkturquoise, darkviolet, deeppink, deepskyblue, dimgray, dimgrey, dodgerblue, firebrick, floralwhite, forestgreen, fuchsia, gainsboro, ghostwhite, gold, goldenrod, gray, grey, green, greenyellow, honeydew, hotpink, indianred, indigo, ivory, khaki, lavender, lavenderblush, lawngreen, lemonchiffon, lightblue, lightcoral, lightcyan, lightgoldenrodyellow, lightgray, lightgrey, lightgreen, lightpink, lightsalmon, lightseagreen, lightskyblue, lightslategray, lightslategrey, lightsteelblue, lightyellow, lime, limegreen, linen, magenta, maroon, mediumaquamarine, mediumblue, mediumorchid, mediumpurple, mediumseagreen, mediumslateblue, mediumspringgreen, mediumturquoise, mediumvioletred, midnightblue, mintcream, mistyrose, moccasin, navajowhite, navy, oldlace, olive, olivedrab, orange, orangered, orchid, palegoldenrod, palegreen, paleturquoise, palevioletred, papayawhip, peachpuff, peru, pink, plum, powderblue, purple, red, rosybrown, royalblue, rebeccapurple, saddlebrown, salmon, sandybrown, seagreen, seashell, sienna, silver, skyblue, slateblue, slategray, slategrey, snow, springgreen, steelblue, tan, teal, thistle, tomato, turquoise, violet, wheat, white, whitesmoke, yellow, yellowgreen Returns ------- str """ return self["fillcolor"] @fillcolor.setter def fillcolor(self, val): self["fillcolor"] = val # fillpattern # ----------- @property def fillpattern(self): """ Sets the pattern within the marker. The 'fillpattern' property is an instance of Fillpattern that may be specified as: - An instance of :class:`plotly.graph_objs.scatter.Fillpattern` - A dict of string/value properties that will be passed to the Fillpattern constructor Supported dict properties: bgcolor When there is no colorscale sets the color of background pattern fill. Defaults to a `marker.color` background when `fillmode` is "overlay". Otherwise, defaults to a transparent background. bgcolorsrc Sets the source reference on Chart Studio Cloud for `bgcolor`. fgcolor When there is no colorscale sets the color of foreground pattern fill. Defaults to a `marker.color` background when `fillmode` is "replace". Otherwise, defaults to dark grey or white to increase contrast with the `bgcolor`. fgcolorsrc Sets the source reference on Chart Studio Cloud for `fgcolor`. fgopacity Sets the opacity of the foreground pattern fill. Defaults to a 0.5 when `fillmode` is "overlay". Otherwise, defaults to 1. fillmode Determines whether `marker.color` should be used as a default to `bgcolor` or a `fgcolor`. shape Sets the shape of the pattern fill. By default, no pattern is used for filling the area. shapesrc Sets the source reference on Chart Studio Cloud for `shape`. size Sets the size of unit squares of the pattern fill in pixels, which corresponds to the interval of repetition of the pattern. sizesrc Sets the source reference on Chart Studio Cloud for `size`. solidity Sets the solidity of the pattern fill. Solidity is roughly the fraction of the area filled by the pattern. Solidity of 0 shows only the background color without pattern and solidty of 1 shows only the foreground color without pattern. soliditysrc Sets the source reference on Chart Studio Cloud for `solidity`. Returns ------- plotly.graph_objs.scatter.Fillpattern """ return self["fillpattern"] @fillpattern.setter def fillpattern(self, val): self["fillpattern"] = val # groupnorm # --------- @property def groupnorm(self): """ Only relevant when `stackgroup` is used, and only the first `groupnorm` found in the `stackgroup` will be used - including if `visible` is "legendonly" but not if it is `false`. Sets the normalization for the sum of this `stackgroup`. With "fraction", the value of each trace at each location is divided by the sum of all trace values at that location. "percent" is the same but multiplied by 100 to show percentages. If there are multiple subplots, or multiple `stackgroup`s on one subplot, each will be normalized within its own set. The 'groupnorm' property is an enumeration that may be specified as: - One of the following enumeration values: ['', 'fraction', 'percent'] Returns ------- Any """ return self["groupnorm"] @groupnorm.setter def groupnorm(self, val): self["groupnorm"] = val # hoverinfo # --------- @property def hoverinfo(self): """ Determines which trace information appear on hover. If `none` or `skip` are set, no information is displayed upon hovering. But, if `none` is set, click and hover events are still fired. The 'hoverinfo' property is a flaglist and may be specified as a string containing: - Any combination of ['x', 'y', 'z', 'text', 'name'] joined with '+' characters (e.g. 'x+y') OR exactly one of ['all', 'none', 'skip'] (e.g. 'skip') - A list or array of the above Returns ------- Any|numpy.ndarray """ return self["hoverinfo"] @hoverinfo.setter def hoverinfo(self, val): self["hoverinfo"] = val # hoverinfosrc # ------------ @property def hoverinfosrc(self): """ Sets the source reference on Chart Studio Cloud for `hoverinfo`. The 'hoverinfosrc' property must be specified as a string or as a plotly.grid_objs.Column object Returns ------- str """ return self["hoverinfosrc"] @hoverinfosrc.setter def hoverinfosrc(self, val): self["hoverinfosrc"] = val # hoverlabel # ---------- @property def hoverlabel(self): """ The 'hoverlabel' property is an instance of Hoverlabel that may be specified as: - An instance of :class:`plotly.graph_objs.scatter.Hoverlabel` - A dict of string/value properties that will be passed to the Hoverlabel constructor Supported dict properties: align Sets the horizontal alignment of the text content within hover label box. Has an effect only if the hover label text spans more two or more lines alignsrc Sets the source reference on Chart Studio Cloud for `align`. bgcolor Sets the background color of the hover labels for this trace bgcolorsrc Sets the source reference on Chart Studio Cloud for `bgcolor`. bordercolor Sets the border color of the hover labels for this trace. bordercolorsrc Sets the source reference on Chart Studio Cloud for `bordercolor`. font Sets the font used in hover labels. namelength Sets the default length (in number of characters) of the trace name in the hover labels for all traces. -1 shows the whole name regardless of length. 0-3 shows the first 0-3 characters, and an integer >3 will show the whole name if it is less than that many characters, but if it is longer, will truncate to `namelength - 3` characters and add an ellipsis. namelengthsrc Sets the source reference on Chart Studio Cloud for `namelength`. Returns ------- plotly.graph_objs.scatter.Hoverlabel """ return self["hoverlabel"] @hoverlabel.setter def hoverlabel(self, val): self["hoverlabel"] = val # hoveron # ------- @property def hoveron(self): """ Do the hover effects highlight individual points (markers or line points) or do they highlight filled regions? If the fill is "toself" or "tonext" and there are no markers or text, then the default is "fills", otherwise it is "points". The 'hoveron' property is a flaglist and may be specified as a string containing: - Any combination of ['points', 'fills'] joined with '+' characters (e.g. 'points+fills') Returns ------- Any """ return self["hoveron"] @hoveron.setter def hoveron(self, val): self["hoveron"] = val # hovertemplate # ------------- @property def hovertemplate(self): """ Template string used for rendering the information that appear on hover box. Note that this will override `hoverinfo`. Variables are inserted using %{variable}, for example "y: %{y}" as well as %{xother}, {%_xother}, {%_xother_}, {%xother_}. When showing info for several points, "xother" will be added to those with different x positions from the first point. An underscore before or after "(x|y)other" will add a space on that side, only when this field is shown. Numbers are formatted using d3-format's syntax %{variable:d3-format}, for example "Price: %{y:$.2f}". https://github.com/d3/d3-format/tree/v1.4.5#d3-format for details on the formatting syntax. Dates are formatted using d3-time-format's syntax %{variable|d3-time-format}, for example "Day: %{2019-01-01|%A}". https://github.com/d3/d3-time- format/tree/v2.2.3#locale_format for details on the date formatting syntax. The variables available in `hovertemplate` are the ones emitted as event data described at this link https://plotly.com/javascript/plotlyjs-events/#event-data. Additionally, every attributes that can be specified per-point (the ones that are `arrayOk: true`) are available. Anything contained in tag `` is displayed in the secondary box, for example "{fullData.name}". To hide the secondary box completely, use an empty tag ``. The 'hovertemplate' property is a string and must be specified as: - A string - A number that will be converted to a string - A tuple, list, or one-dimensional numpy array of the above Returns ------- str|numpy.ndarray """ return self["hovertemplate"] @hovertemplate.setter def hovertemplate(self, val): self["hovertemplate"] = val # hovertemplatesrc # ---------------- @property def hovertemplatesrc(self): """ Sets the source reference on Chart Studio Cloud for `hovertemplate`. The 'hovertemplatesrc' property must be specified as a string or as a plotly.grid_objs.Column object Returns ------- str """ return self["hovertemplatesrc"] @hovertemplatesrc.setter def hovertemplatesrc(self, val): self["hovertemplatesrc"] = val # hovertext # --------- @property def hovertext(self): """ Sets hover text elements associated with each (x,y) pair. If a single string, the same string appears over all the data points. If an array of string, the items are mapped in order to the this trace's (x,y) coordinates. To be seen, trace `hoverinfo` must contain a "text" flag. The 'hovertext' property is a string and must be specified as: - A string - A number that will be converted to a string - A tuple, list, or one-dimensional numpy array of the above Returns ------- str|numpy.ndarray """ return self["hovertext"] @hovertext.setter def hovertext(self, val): self["hovertext"] = val # hovertextsrc # ------------ @property def hovertextsrc(self): """ Sets the source reference on Chart Studio Cloud for `hovertext`. The 'hovertextsrc' property must be specified as a string or as a plotly.grid_objs.Column object Returns ------- str """ return self["hovertextsrc"] @hovertextsrc.setter def hovertextsrc(self, val): self["hovertextsrc"] = val # ids # --- @property def ids(self): """ Assigns id labels to each datum. These ids for object constancy of data points during animation. Should be an array of strings, not numbers or any other type. The 'ids' property is an array that may be specified as a tuple, list, numpy array, or pandas Series Returns ------- numpy.ndarray """ return self["ids"] @ids.setter def ids(self, val): self["ids"] = val # idssrc # ------ @property def idssrc(self): """ Sets the source reference on Chart Studio Cloud for `ids`. The 'idssrc' property must be specified as a string or as a plotly.grid_objs.Column object Returns ------- str """ return self["idssrc"] @idssrc.setter def idssrc(self, val): self["idssrc"] = val # legend # ------ @property def legend(self): """ Sets the reference to a legend to show this trace in. References to these legends are "legend", "legend2", "legend3", etc. Settings for these legends are set in the layout, under `layout.legend`, `layout.legend2`, etc. The 'legend' property is an identifier of a particular subplot, of type 'legend', that may be specified as the string 'legend' optionally followed by an integer >= 1 (e.g. 'legend', 'legend1', 'legend2', 'legend3', etc.) Returns ------- str """ return self["legend"] @legend.setter def legend(self, val): self["legend"] = val # legendgroup # ----------- @property def legendgroup(self): """ Sets the legend group for this trace. Traces and shapes part of the same legend group hide/show at the same time when toggling legend items. The 'legendgroup' property is a string and must be specified as: - A string - A number that will be converted to a string Returns ------- str """ return self["legendgroup"] @legendgroup.setter def legendgroup(self, val): self["legendgroup"] = val # legendgrouptitle # ---------------- @property def legendgrouptitle(self): """ The 'legendgrouptitle' property is an instance of Legendgrouptitle that may be specified as: - An instance of :class:`plotly.graph_objs.scatter.Legendgrouptitle` - A dict of string/value properties that will be passed to the Legendgrouptitle constructor Supported dict properties: font Sets this legend group's title font. text Sets the title of the legend group. Returns ------- plotly.graph_objs.scatter.Legendgrouptitle """ return self["legendgrouptitle"] @legendgrouptitle.setter def legendgrouptitle(self, val): self["legendgrouptitle"] = val # legendrank # ---------- @property def legendrank(self): """ Sets the legend rank for this trace. Items and groups with smaller ranks are presented on top/left side while with "reversed" `legend.traceorder` they are on bottom/right side. The default legendrank is 1000, so that you can use ranks less than 1000 to place certain items before all unranked items, and ranks greater than 1000 to go after all unranked items. When having unranked or equal rank items shapes would be displayed after traces i.e. according to their order in data and layout. The 'legendrank' property is a number and may be specified as: - An int or float Returns ------- int|float """ return self["legendrank"] @legendrank.setter def legendrank(self, val): self["legendrank"] = val # legendwidth # ----------- @property def legendwidth(self): """ Sets the width (in px or fraction) of the legend for this trace. The 'legendwidth' property is a number and may be specified as: - An int or float in the interval [0, inf] Returns ------- int|float """ return self["legendwidth"] @legendwidth.setter def legendwidth(self, val): self["legendwidth"] = val # line # ---- @property def line(self): """ The 'line' property is an instance of Line that may be specified as: - An instance of :class:`plotly.graph_objs.scatter.Line` - A dict of string/value properties that will be passed to the Line constructor Supported dict properties: backoff Sets the line back off from the end point of the nth line segment (in px). This option is useful e.g. to avoid overlap with arrowhead markers. With "auto" the lines would trim before markers if `marker.angleref` is set to "previous". backoffsrc Sets the source reference on Chart Studio Cloud for `backoff`. color Sets the line color. dash Sets the dash style of lines. Set to a dash type string ("solid", "dot", "dash", "longdash", "dashdot", or "longdashdot") or a dash length list in px (eg "5px,10px,2px,2px"). shape Determines the line shape. With "spline" the lines are drawn using spline interpolation. The other available values correspond to step-wise line shapes. simplify Simplifies lines by removing nearly-collinear points. When transitioning lines, it may be desirable to disable this so that the number of points along the resulting SVG path is unaffected. smoothing Has an effect only if `shape` is set to "spline" Sets the amount of smoothing. 0 corresponds to no smoothing (equivalent to a "linear" shape). width Sets the line width (in px). Returns ------- plotly.graph_objs.scatter.Line """ return self["line"] @line.setter def line(self, val): self["line"] = val # marker # ------ @property def marker(self): """ The 'marker' property is an instance of Marker that may be specified as: - An instance of :class:`plotly.graph_objs.scatter.Marker` - A dict of string/value properties that will be passed to the Marker constructor Supported dict properties: angle Sets the marker angle in respect to `angleref`. angleref Sets the reference for marker angle. With "previous", angle 0 points along the line from the previous point to this one. With "up", angle 0 points toward the top of the screen. anglesrc Sets the source reference on Chart Studio Cloud for `angle`. autocolorscale Determines whether the colorscale is a default palette (`autocolorscale: true`) or the palette determined by `marker.colorscale`. Has an effect only if in `marker.color` is set to a numerical array. In case `colorscale` is unspecified or `autocolorscale` is true, the default palette will be chosen according to whether numbers in the `color` array are all positive, all negative or mixed. cauto Determines whether or not the color domain is computed with respect to the input data (here in `marker.color`) or the bounds set in `marker.cmin` and `marker.cmax` Has an effect only if in `marker.color` is set to a numerical array. Defaults to `false` when `marker.cmin` and `marker.cmax` are set by the user. cmax Sets the upper bound of the color domain. Has an effect only if in `marker.color` is set to a numerical array. Value should have the same units as in `marker.color` and if set, `marker.cmin` must be set as well. cmid Sets the mid-point of the color domain by scaling `marker.cmin` and/or `marker.cmax` to be equidistant to this point. Has an effect only if in `marker.color` is set to a numerical array. Value should have the same units as in `marker.color`. Has no effect when `marker.cauto` is `false`. cmin Sets the lower bound of the color domain. Has an effect only if in `marker.color` is set to a numerical array. Value should have the same units as in `marker.color` and if set, `marker.cmax` must be set as well. color Sets the marker color. It accepts either a specific color or an array of numbers that are mapped to the colorscale relative to the max and min values of the array or relative to `marker.cmin` and `marker.cmax` if set. coloraxis Sets a reference to a shared color axis. References to these shared color axes are "coloraxis", "coloraxis2", "coloraxis3", etc. Settings for these shared color axes are set in the layout, under `layout.coloraxis`, `layout.coloraxis2`, etc. Note that multiple color scales can be linked to the same color axis. colorbar :class:`plotly.graph_objects.scatter.marker.Col orBar` instance or dict with compatible properties colorscale Sets the colorscale. Has an effect only if in `marker.color` is set to a numerical array. The colorscale must be an array containing arrays mapping a normalized value to an rgb, rgba, hex, hsl, hsv, or named color string. At minimum, a mapping for the lowest (0) and highest (1) values are required. For example, `[[0, 'rgb(0,0,255)'], [1, 'rgb(255,0,0)']]`. To control the bounds of the colorscale in color space, use `marker.cmin` and `marker.cmax`. Alternatively, `colorscale` may be a palette name string of the following list: Blackbody,Bluered,Blues,Cividis,Earth,Electric, Greens,Greys,Hot,Jet,Picnic,Portland,Rainbow,Rd Bu,Reds,Viridis,YlGnBu,YlOrRd. colorsrc Sets the source reference on Chart Studio Cloud for `color`. gradient :class:`plotly.graph_objects.scatter.marker.Gra dient` instance or dict with compatible properties line :class:`plotly.graph_objects.scatter.marker.Lin e` instance or dict with compatible properties maxdisplayed Sets a maximum number of points to be drawn on the graph. 0 corresponds to no limit. opacity Sets the marker opacity. opacitysrc Sets the source reference on Chart Studio Cloud for `opacity`. reversescale Reverses the color mapping if true. Has an effect only if in `marker.color` is set to a numerical array. If true, `marker.cmin` will correspond to the last color in the array and `marker.cmax` will correspond to the first color. showscale Determines whether or not a colorbar is displayed for this trace. Has an effect only if in `marker.color` is set to a numerical array. size Sets the marker size (in px). sizemin Has an effect only if `marker.size` is set to a numerical array. Sets the minimum size (in px) of the rendered marker points. sizemode Has an effect only if `marker.size` is set to a numerical array. Sets the rule for which the data in `size` is converted to pixels. sizeref Has an effect only if `marker.size` is set to a numerical array. Sets the scale factor used to determine the rendered size of marker points. Use with `sizemin` and `sizemode`. sizesrc Sets the source reference on Chart Studio Cloud for `size`. standoff Moves the marker away from the data point in the direction of `angle` (in px). This can be useful for example if you have another marker at this location and you want to point an arrowhead marker at it. standoffsrc Sets the source reference on Chart Studio Cloud for `standoff`. symbol Sets the marker symbol type. Adding 100 is equivalent to appending "-open" to a symbol name. Adding 200 is equivalent to appending "-dot" to a symbol name. Adding 300 is equivalent to appending "-open-dot" or "dot- open" to a symbol name. symbolsrc Sets the source reference on Chart Studio Cloud for `symbol`. Returns ------- plotly.graph_objs.scatter.Marker """ return self["marker"] @marker.setter def marker(self, val): self["marker"] = val # meta # ---- @property def meta(self): """ Assigns extra meta information associated with this trace that can be used in various text attributes. Attributes such as trace `name`, graph, axis and colorbar `title.text`, annotation `text` `rangeselector`, `updatemenues` and `sliders` `label` text all support `meta`. To access the trace `meta` values in an attribute in the same trace, simply use `%{meta[i]}` where `i` is the index or key of the `meta` item in question. To access trace `meta` in layout attributes, use `%{data[n[.meta[i]}` where `i` is the index or key of the `meta` and `n` is the trace index. The 'meta' property accepts values of any type Returns ------- Any|numpy.ndarray """ return self["meta"] @meta.setter def meta(self, val): self["meta"] = val # metasrc # ------- @property def metasrc(self): """ Sets the source reference on Chart Studio Cloud for `meta`. The 'metasrc' property must be specified as a string or as a plotly.grid_objs.Column object Returns ------- str """ return self["metasrc"] @metasrc.setter def metasrc(self, val): self["metasrc"] = val # mode # ---- @property def mode(self): """ Determines the drawing mode for this scatter trace. If the provided `mode` includes "text" then the `text` elements appear at the coordinates. Otherwise, the `text` elements appear on hover. If there are less than 20 points and the trace is not stacked then the default is "lines+markers". Otherwise, "lines". The 'mode' property is a flaglist and may be specified as a string containing: - Any combination of ['lines', 'markers', 'text'] joined with '+' characters (e.g. 'lines+markers') OR exactly one of ['none'] (e.g. 'none') Returns ------- Any """ return self["mode"] @mode.setter def mode(self, val): self["mode"] = val # name # ---- @property def name(self): """ Sets the trace name. The trace name appears as the legend item and on hover. The 'name' property is a string and must be specified as: - A string - A number that will be converted to a string Returns ------- str """ return self["name"] @name.setter def name(self, val): self["name"] = val # offsetgroup # ----------- @property def offsetgroup(self): """ Set several traces linked to the same position axis or matching axes to the same offsetgroup where bars of the same position coordinate will line up. The 'offsetgroup' property is a string and must be specified as: - A string - A number that will be converted to a string Returns ------- str """ return self["offsetgroup"] @offsetgroup.setter def offsetgroup(self, val): self["offsetgroup"] = val # opacity # ------- @property def opacity(self): """ Sets the opacity of the trace. The 'opacity' property is a number and may be specified as: - An int or float in the interval [0, 1] Returns ------- int|float """ return self["opacity"] @opacity.setter def opacity(self, val): self["opacity"] = val # orientation # ----------- @property def orientation(self): """ Only relevant in the following cases: 1. when `scattermode` is set to "group". 2. when `stackgroup` is used, and only the first `orientation` found in the `stackgroup` will be used - including if `visible` is "legendonly" but not if it is `false`. Sets the stacking direction. With "v" ("h"), the y (x) values of subsequent traces are added. Also affects the default value of `fill`. The 'orientation' property is an enumeration that may be specified as: - One of the following enumeration values: ['v', 'h'] Returns ------- Any """ return self["orientation"] @orientation.setter def orientation(self, val): self["orientation"] = val # selected # -------- @property def selected(self): """ The 'selected' property is an instance of Selected that may be specified as: - An instance of :class:`plotly.graph_objs.scatter.Selected` - A dict of string/value properties that will be passed to the Selected constructor Supported dict properties: marker :class:`plotly.graph_objects.scatter.selected.M arker` instance or dict with compatible properties textfont :class:`plotly.graph_objects.scatter.selected.T extfont` instance or dict with compatible properties Returns ------- plotly.graph_objs.scatter.Selected """ return self["selected"] @selected.setter def selected(self, val): self["selected"] = val # selectedpoints # -------------- @property def selectedpoints(self): """ Array containing integer indices of selected points. Has an effect only for traces that support selections. Note that an empty array means an empty selection where the `unselected` are turned on for all points, whereas, any other non-array values means no selection all where the `selected` and `unselected` styles have no effect. The 'selectedpoints' property accepts values of any type Returns ------- Any """ return self["selectedpoints"] @selectedpoints.setter def selectedpoints(self, val): self["selectedpoints"] = val # showlegend # ---------- @property def showlegend(self): """ Determines whether or not an item corresponding to this trace is shown in the legend. The 'showlegend' property must be specified as a bool (either True, or False) Returns ------- bool """ return self["showlegend"] @showlegend.setter def showlegend(self, val): self["showlegend"] = val # stackgaps # --------- @property def stackgaps(self): """ Only relevant when `stackgroup` is used, and only the first `stackgaps` found in the `stackgroup` will be used - including if `visible` is "legendonly" but not if it is `false`. Determines how we handle locations at which other traces in this group have data but this one does not. With *infer zero* we insert a zero at these locations. With "interpolate" we linearly interpolate between existing values, and extrapolate a constant beyond the existing values. The 'stackgaps' property is an enumeration that may be specified as: - One of the following enumeration values: ['infer zero', 'interpolate'] Returns ------- Any """ return self["stackgaps"] @stackgaps.setter def stackgaps(self, val): self["stackgaps"] = val # stackgroup # ---------- @property def stackgroup(self): """ Set several scatter traces (on the same subplot) to the same stackgroup in order to add their y values (or their x values if `orientation` is "h"). If blank or omitted this trace will not be stacked. Stacking also turns `fill` on by default, using "tonexty" ("tonextx") if `orientation` is "h" ("v") and sets the default `mode` to "lines" irrespective of point count. You can only stack on a numeric (linear or log) axis. Traces in a `stackgroup` will only fill to (or be filled to) other traces in the same group. With multiple `stackgroup`s or some traces stacked and some not, if fill-linked traces are not already consecutive, the later ones will be pushed down in the drawing order. The 'stackgroup' property is a string and must be specified as: - A string - A number that will be converted to a string Returns ------- str """ return self["stackgroup"] @stackgroup.setter def stackgroup(self, val): self["stackgroup"] = val # stream # ------ @property def stream(self): """ The 'stream' property is an instance of Stream that may be specified as: - An instance of :class:`plotly.graph_objs.scatter.Stream` - A dict of string/value properties that will be passed to the Stream constructor Supported dict properties: maxpoints Sets the maximum number of points to keep on the plots from an incoming stream. If `maxpoints` is set to 50, only the newest 50 points will be displayed on the plot. token The stream id number links a data trace on a plot with a stream. See https://chart- studio.plotly.com/settings for more details. Returns ------- plotly.graph_objs.scatter.Stream """ return self["stream"] @stream.setter def stream(self, val): self["stream"] = val # text # ---- @property def text(self): """ Sets text elements associated with each (x,y) pair. If a single string, the same string appears over all the data points. If an array of string, the items are mapped in order to the this trace's (x,y) coordinates. If trace `hoverinfo` contains a "text" flag and "hovertext" is not set, these elements will be seen in the hover labels. The 'text' property is a string and must be specified as: - A string - A number that will be converted to a string - A tuple, list, or one-dimensional numpy array of the above Returns ------- str|numpy.ndarray """ return self["text"] @text.setter def text(self, val): self["text"] = val # textfont # -------- @property def textfont(self): """ Sets the text font. The 'textfont' property is an instance of Textfont that may be specified as: - An instance of :class:`plotly.graph_objs.scatter.Textfont` - A dict of string/value properties that will be passed to the Textfont constructor Supported dict properties: color colorsrc Sets the source reference on Chart Studio Cloud for `color`. family HTML font family - the typeface that will be applied by the web browser. The web browser will only be able to apply a font if it is available on the system which it operates. Provide multiple font families, separated by commas, to indicate the preference in which to apply fonts if they aren't available on the system. The Chart Studio Cloud (at https://chart-studio.plotly.com or on-premise) generates images on a server, where only a select number of fonts are installed and supported. These include "Arial", "Balto", "Courier New", "Droid Sans",, "Droid Serif", "Droid Sans Mono", "Gravitas One", "Old Standard TT", "Open Sans", "Overpass", "PT Sans Narrow", "Raleway", "Times New Roman". familysrc Sets the source reference on Chart Studio Cloud for `family`. size sizesrc Sets the source reference on Chart Studio Cloud for `size`. Returns ------- plotly.graph_objs.scatter.Textfont """ return self["textfont"] @textfont.setter def textfont(self, val): self["textfont"] = val # textposition # ------------ @property def textposition(self): """ Sets the positions of the `text` elements with respects to the (x,y) coordinates. The 'textposition' property is an enumeration that may be specified as: - One of the following enumeration values: ['top left', 'top center', 'top right', 'middle left', 'middle center', 'middle right', 'bottom left', 'bottom center', 'bottom right'] - A tuple, list, or one-dimensional numpy array of the above Returns ------- Any|numpy.ndarray """ return self["textposition"] @textposition.setter def textposition(self, val): self["textposition"] = val # textpositionsrc # --------------- @property def textpositionsrc(self): """ Sets the source reference on Chart Studio Cloud for `textposition`. The 'textpositionsrc' property must be specified as a string or as a plotly.grid_objs.Column object Returns ------- str """ return self["textpositionsrc"] @textpositionsrc.setter def textpositionsrc(self, val): self["textpositionsrc"] = val # textsrc # ------- @property def textsrc(self): """ Sets the source reference on Chart Studio Cloud for `text`. The 'textsrc' property must be specified as a string or as a plotly.grid_objs.Column object Returns ------- str """ return self["textsrc"] @textsrc.setter def textsrc(self, val): self["textsrc"] = val # texttemplate # ------------ @property def texttemplate(self): """ Template string used for rendering the information text that appear on points. Note that this will override `textinfo`. Variables are inserted using %{variable}, for example "y: %{y}". Numbers are formatted using d3-format's syntax %{variable:d3-format}, for example "Price: %{y:$.2f}". https://github.com/d3/d3-format/tree/v1.4.5#d3-format for details on the formatting syntax. Dates are formatted using d3-time-format's syntax %{variable|d3-time-format}, for example "Day: %{2019-01-01|%A}". https://github.com/d3/d3-time- format/tree/v2.2.3#locale_format for details on the date formatting syntax. Every attributes that can be specified per- point (the ones that are `arrayOk: true`) are available. The 'texttemplate' property is a string and must be specified as: - A string - A number that will be converted to a string - A tuple, list, or one-dimensional numpy array of the above Returns ------- str|numpy.ndarray """ return self["texttemplate"] @texttemplate.setter def texttemplate(self, val): self["texttemplate"] = val # texttemplatesrc # --------------- @property def texttemplatesrc(self): """ Sets the source reference on Chart Studio Cloud for `texttemplate`. The 'texttemplatesrc' property must be specified as a string or as a plotly.grid_objs.Column object Returns ------- str """ return self["texttemplatesrc"] @texttemplatesrc.setter def texttemplatesrc(self, val): self["texttemplatesrc"] = val # uid # --- @property def uid(self): """ Assign an id to this trace, Use this to provide object constancy between traces during animations and transitions. The 'uid' property is a string and must be specified as: - A string - A number that will be converted to a string Returns ------- str """ return self["uid"] @uid.setter def uid(self, val): self["uid"] = val # uirevision # ---------- @property def uirevision(self): """ Controls persistence of some user-driven changes to the trace: `constraintrange` in `parcoords` traces, as well as some `editable: true` modifications such as `name` and `colorbar.title`. Defaults to `layout.uirevision`. Note that other user-driven trace attribute changes are controlled by `layout` attributes: `trace.visible` is controlled by `layout.legend.uirevision`, `selectedpoints` is controlled by `layout.selectionrevision`, and `colorbar.(x|y)` (accessible with `config: {editable: true}`) is controlled by `layout.editrevision`. Trace changes are tracked by `uid`, which only falls back on trace index if no `uid` is provided. So if your app can add/remove traces before the end of the `data` array, such that the same trace has a different index, you can still preserve user-driven changes if you give each trace a `uid` that stays with it as it moves. The 'uirevision' property accepts values of any type Returns ------- Any """ return self["uirevision"] @uirevision.setter def uirevision(self, val): self["uirevision"] = val # unselected # ---------- @property def unselected(self): """ The 'unselected' property is an instance of Unselected that may be specified as: - An instance of :class:`plotly.graph_objs.scatter.Unselected` - A dict of string/value properties that will be passed to the Unselected constructor Supported dict properties: marker :class:`plotly.graph_objects.scatter.unselected .Marker` instance or dict with compatible properties textfont :class:`plotly.graph_objects.scatter.unselected .Textfont` instance or dict with compatible properties Returns ------- plotly.graph_objs.scatter.Unselected """ return self["unselected"] @unselected.setter def unselected(self, val): self["unselected"] = val # visible # ------- @property def visible(self): """ Determines whether or not this trace is visible. If "legendonly", the trace is not drawn, but can appear as a legend item (provided that the legend itself is visible). The 'visible' property is an enumeration that may be specified as: - One of the following enumeration values: [True, False, 'legendonly'] Returns ------- Any """ return self["visible"] @visible.setter def visible(self, val): self["visible"] = val # x # - @property def x(self): """ Sets the x coordinates. The 'x' property is an array that may be specified as a tuple, list, numpy array, or pandas Series Returns ------- numpy.ndarray """ return self["x"] @x.setter def x(self, val): self["x"] = val # x0 # -- @property def x0(self): """ Alternate to `x`. Builds a linear space of x coordinates. Use with `dx` where `x0` is the starting coordinate and `dx` the step. The 'x0' property accepts values of any type Returns ------- Any """ return self["x0"] @x0.setter def x0(self, val): self["x0"] = val # xaxis # ----- @property def xaxis(self): """ Sets a reference between this trace's x coordinates and a 2D cartesian x axis. If "x" (the default value), the x coordinates refer to `layout.xaxis`. If "x2", the x coordinates refer to `layout.xaxis2`, and so on. The 'xaxis' property is an identifier of a particular subplot, of type 'x', that may be specified as the string 'x' optionally followed by an integer >= 1 (e.g. 'x', 'x1', 'x2', 'x3', etc.) Returns ------- str """ return self["xaxis"] @xaxis.setter def xaxis(self, val): self["xaxis"] = val # xcalendar # --------- @property def xcalendar(self): """ Sets the calendar system to use with `x` date data. The 'xcalendar' property is an enumeration that may be specified as: - One of the following enumeration values: ['chinese', 'coptic', 'discworld', 'ethiopian', 'gregorian', 'hebrew', 'islamic', 'jalali', 'julian', 'mayan', 'nanakshahi', 'nepali', 'persian', 'taiwan', 'thai', 'ummalqura'] Returns ------- Any """ return self["xcalendar"] @xcalendar.setter def xcalendar(self, val): self["xcalendar"] = val # xhoverformat # ------------ @property def xhoverformat(self): """ Sets the hover text formatting rulefor `x` using d3 formatting mini-languages which are very similar to those in Python. For numbers, see: https://github.com/d3/d3-format/tree/v1.4.5#d3-format. And for dates see: https://github.com/d3/d3-time- format/tree/v2.2.3#locale_format. We add two items to d3's date formatter: "%h" for half of the year as a decimal number as well as "%{n}f" for fractional seconds with n digits. For example, *2016-10-13 09:15:23.456* with tickformat "%H~%M~%S.%2f" would display *09~15~23.46*By default the values are formatted using `xaxis.hoverformat`. The 'xhoverformat' property is a string and must be specified as: - A string - A number that will be converted to a string Returns ------- str """ return self["xhoverformat"] @xhoverformat.setter def xhoverformat(self, val): self["xhoverformat"] = val # xperiod # ------- @property def xperiod(self): """ Only relevant when the axis `type` is "date". Sets the period positioning in milliseconds or "M" on the x axis. Special values in the form of "M" could be used to declare the number of months. In this case `n` must be a positive integer. The 'xperiod' property accepts values of any type Returns ------- Any """ return self["xperiod"] @xperiod.setter def xperiod(self, val): self["xperiod"] = val # xperiod0 # -------- @property def xperiod0(self): """ Only relevant when the axis `type` is "date". Sets the base for period positioning in milliseconds or date string on the x0 axis. When `x0period` is round number of weeks, the `x0period0` by default would be on a Sunday i.e. 2000-01-02, otherwise it would be at 2000-01-01. The 'xperiod0' property accepts values of any type Returns ------- Any """ return self["xperiod0"] @xperiod0.setter def xperiod0(self, val): self["xperiod0"] = val # xperiodalignment # ---------------- @property def xperiodalignment(self): """ Only relevant when the axis `type` is "date". Sets the alignment of data points on the x axis. The 'xperiodalignment' property is an enumeration that may be specified as: - One of the following enumeration values: ['start', 'middle', 'end'] Returns ------- Any """ return self["xperiodalignment"] @xperiodalignment.setter def xperiodalignment(self, val): self["xperiodalignment"] = val # xsrc # ---- @property def xsrc(self): """ Sets the source reference on Chart Studio Cloud for `x`. The 'xsrc' property must be specified as a string or as a plotly.grid_objs.Column object Returns ------- str """ return self["xsrc"] @xsrc.setter def xsrc(self, val): self["xsrc"] = val # y # - @property def y(self): """ Sets the y coordinates. The 'y' property is an array that may be specified as a tuple, list, numpy array, or pandas Series Returns ------- numpy.ndarray """ return self["y"] @y.setter def y(self, val): self["y"] = val # y0 # -- @property def y0(self): """ Alternate to `y`. Builds a linear space of y coordinates. Use with `dy` where `y0` is the starting coordinate and `dy` the step. The 'y0' property accepts values of any type Returns ------- Any """ return self["y0"] @y0.setter def y0(self, val): self["y0"] = val # yaxis # ----- @property def yaxis(self): """ Sets a reference between this trace's y coordinates and a 2D cartesian y axis. If "y" (the default value), the y coordinates refer to `layout.yaxis`. If "y2", the y coordinates refer to `layout.yaxis2`, and so on. The 'yaxis' property is an identifier of a particular subplot, of type 'y', that may be specified as the string 'y' optionally followed by an integer >= 1 (e.g. 'y', 'y1', 'y2', 'y3', etc.) Returns ------- str """ return self["yaxis"] @yaxis.setter def yaxis(self, val): self["yaxis"] = val # ycalendar # --------- @property def ycalendar(self): """ Sets the calendar system to use with `y` date data. The 'ycalendar' property is an enumeration that may be specified as: - One of the following enumeration values: ['chinese', 'coptic', 'discworld', 'ethiopian', 'gregorian', 'hebrew', 'islamic', 'jalali', 'julian', 'mayan', 'nanakshahi', 'nepali', 'persian', 'taiwan', 'thai', 'ummalqura'] Returns ------- Any """ return self["ycalendar"] @ycalendar.setter def ycalendar(self, val): self["ycalendar"] = val # yhoverformat # ------------ @property def yhoverformat(self): """ Sets the hover text formatting rulefor `y` using d3 formatting mini-languages which are very similar to those in Python. For numbers, see: https://github.com/d3/d3-format/tree/v1.4.5#d3-format. And for dates see: https://github.com/d3/d3-time- format/tree/v2.2.3#locale_format. We add two items to d3's date formatter: "%h" for half of the year as a decimal number as well as "%{n}f" for fractional seconds with n digits. For example, *2016-10-13 09:15:23.456* with tickformat "%H~%M~%S.%2f" would display *09~15~23.46*By default the values are formatted using `yaxis.hoverformat`. The 'yhoverformat' property is a string and must be specified as: - A string - A number that will be converted to a string Returns ------- str """ return self["yhoverformat"] @yhoverformat.setter def yhoverformat(self, val): self["yhoverformat"] = val # yperiod # ------- @property def yperiod(self): """ Only relevant when the axis `type` is "date". Sets the period positioning in milliseconds or "M" on the y axis. Special values in the form of "M" could be used to declare the number of months. In this case `n` must be a positive integer. The 'yperiod' property accepts values of any type Returns ------- Any """ return self["yperiod"] @yperiod.setter def yperiod(self, val): self["yperiod"] = val # yperiod0 # -------- @property def yperiod0(self): """ Only relevant when the axis `type` is "date". Sets the base for period positioning in milliseconds or date string on the y0 axis. When `y0period` is round number of weeks, the `y0period0` by default would be on a Sunday i.e. 2000-01-02, otherwise it would be at 2000-01-01. The 'yperiod0' property accepts values of any type Returns ------- Any """ return self["yperiod0"] @yperiod0.setter def yperiod0(self, val): self["yperiod0"] = val # yperiodalignment # ---------------- @property def yperiodalignment(self): """ Only relevant when the axis `type` is "date". Sets the alignment of data points on the y axis. The 'yperiodalignment' property is an enumeration that may be specified as: - One of the following enumeration values: ['start', 'middle', 'end'] Returns ------- Any """ return self["yperiodalignment"] @yperiodalignment.setter def yperiodalignment(self, val): self["yperiodalignment"] = val # ysrc # ---- @property def ysrc(self): """ Sets the source reference on Chart Studio Cloud for `y`. The 'ysrc' property must be specified as a string or as a plotly.grid_objs.Column object Returns ------- str """ return self["ysrc"] @ysrc.setter def ysrc(self, val): self["ysrc"] = val # type # ---- @property def type(self): return self._props["type"] # Self properties description # --------------------------- @property def _prop_descriptions(self): return """\ alignmentgroup Set several traces linked to the same position axis or matching axes to the same alignmentgroup. This controls whether bars compute their positional range dependently or independently. cliponaxis Determines whether or not markers and text nodes are clipped about the subplot axes. To show markers and text nodes above axis lines and tick labels, make sure to set `xaxis.layer` and `yaxis.layer` to *below traces*. connectgaps Determines whether or not gaps (i.e. {nan} or missing values) in the provided data arrays are connected. customdata Assigns extra data each datum. This may be useful when listening to hover, click and selection events. Note that, "scatter" traces also appends customdata items in the markers DOM elements customdatasrc Sets the source reference on Chart Studio Cloud for `customdata`. dx Sets the x coordinate step. See `x0` for more info. dy Sets the y coordinate step. See `y0` for more info. error_x :class:`plotly.graph_objects.scatter.ErrorX` instance or dict with compatible properties error_y :class:`plotly.graph_objects.scatter.ErrorY` instance or dict with compatible properties fill Sets the area to fill with a solid color. Defaults to "none" unless this trace is stacked, then it gets "tonexty" ("tonextx") if `orientation` is "v" ("h") Use with `fillcolor` if not "none". "tozerox" and "tozeroy" fill to x=0 and y=0 respectively. "tonextx" and "tonexty" fill between the endpoints of this trace and the endpoints of the trace before it, connecting those endpoints with straight lines (to make a stacked area graph); if there is no trace before it, they behave like "tozerox" and "tozeroy". "toself" connects the endpoints of the trace (or each segment of the trace if it has gaps) into a closed shape. "tonext" fills the space between two traces if one completely encloses the other (eg consecutive contour lines), and behaves like "toself" if there is no trace before it. "tonext" should not be used if one trace does not enclose the other. Traces in a `stackgroup` will only fill to (or be filled to) other traces in the same group. With multiple `stackgroup`s or some traces stacked and some not, if fill-linked traces are not already consecutive, the later ones will be pushed down in the drawing order. fillcolor Sets the fill color. Defaults to a half-transparent variant of the line color, marker color, or marker line color, whichever is available. fillpattern Sets the pattern within the marker. groupnorm Only relevant when `stackgroup` is used, and only the first `groupnorm` found in the `stackgroup` will be used - including if `visible` is "legendonly" but not if it is `false`. Sets the normalization for the sum of this `stackgroup`. With "fraction", the value of each trace at each location is divided by the sum of all trace values at that location. "percent" is the same but multiplied by 100 to show percentages. If there are multiple subplots, or multiple `stackgroup`s on one subplot, each will be normalized within its own set. hoverinfo Determines which trace information appear on hover. If `none` or `skip` are set, no information is displayed upon hovering. But, if `none` is set, click and hover events are still fired. hoverinfosrc Sets the source reference on Chart Studio Cloud for `hoverinfo`. hoverlabel :class:`plotly.graph_objects.scatter.Hoverlabel` instance or dict with compatible properties hoveron Do the hover effects highlight individual points (markers or line points) or do they highlight filled regions? If the fill is "toself" or "tonext" and there are no markers or text, then the default is "fills", otherwise it is "points". hovertemplate Template string used for rendering the information that appear on hover box. Note that this will override `hoverinfo`. Variables are inserted using %{variable}, for example "y: %{y}" as well as %{xother}, {%_xother}, {%_xother_}, {%xother_}. When showing info for several points, "xother" will be added to those with different x positions from the first point. An underscore before or after "(x|y)other" will add a space on that side, only when this field is shown. Numbers are formatted using d3-format's syntax %{variable:d3-format}, for example "Price: %{y:$.2f}". https://github.com/d3/d3-format/tree/v1.4.5#d3-format for details on the formatting syntax. Dates are formatted using d3-time-format's syntax %{variable|d3-time-format}, for example "Day: %{2019-01-01|%A}". https://github.com/d3/d3-time- format/tree/v2.2.3#locale_format for details on the date formatting syntax. The variables available in `hovertemplate` are the ones emitted as event data described at this link https://plotly.com/javascript/plotlyjs-events/#event- data. Additionally, every attributes that can be specified per-point (the ones that are `arrayOk: true`) are available. Anything contained in tag `` is displayed in the secondary box, for example "{fullData.name}". To hide the secondary box completely, use an empty tag ``. hovertemplatesrc Sets the source reference on Chart Studio Cloud for `hovertemplate`. hovertext Sets hover text elements associated with each (x,y) pair. If a single string, the same string appears over all the data points. If an array of string, the items are mapped in order to the this trace's (x,y) coordinates. To be seen, trace `hoverinfo` must contain a "text" flag. hovertextsrc Sets the source reference on Chart Studio Cloud for `hovertext`. ids Assigns id labels to each datum. These ids for object constancy of data points during animation. Should be an array of strings, not numbers or any other type. idssrc Sets the source reference on Chart Studio Cloud for `ids`. legend Sets the reference to a legend to show this trace in. References to these legends are "legend", "legend2", "legend3", etc. Settings for these legends are set in the layout, under `layout.legend`, `layout.legend2`, etc. legendgroup Sets the legend group for this trace. Traces and shapes part of the same legend group hide/show at the same time when toggling legend items. legendgrouptitle :class:`plotly.graph_objects.scatter.Legendgrouptitle` instance or dict with compatible properties legendrank Sets the legend rank for this trace. Items and groups with smaller ranks are presented on top/left side while with "reversed" `legend.traceorder` they are on bottom/right side. The default legendrank is 1000, so that you can use ranks less than 1000 to place certain items before all unranked items, and ranks greater than 1000 to go after all unranked items. When having unranked or equal rank items shapes would be displayed after traces i.e. according to their order in data and layout. legendwidth Sets the width (in px or fraction) of the legend for this trace. line :class:`plotly.graph_objects.scatter.Line` instance or dict with compatible properties marker :class:`plotly.graph_objects.scatter.Marker` instance or dict with compatible properties meta Assigns extra meta information associated with this trace that can be used in various text attributes. Attributes such as trace `name`, graph, axis and colorbar `title.text`, annotation `text` `rangeselector`, `updatemenues` and `sliders` `label` text all support `meta`. To access the trace `meta` values in an attribute in the same trace, simply use `%{meta[i]}` where `i` is the index or key of the `meta` item in question. To access trace `meta` in layout attributes, use `%{data[n[.meta[i]}` where `i` is the index or key of the `meta` and `n` is the trace index. metasrc Sets the source reference on Chart Studio Cloud for `meta`. mode Determines the drawing mode for this scatter trace. If the provided `mode` includes "text" then the `text` elements appear at the coordinates. Otherwise, the `text` elements appear on hover. If there are less than 20 points and the trace is not stacked then the default is "lines+markers". Otherwise, "lines". name Sets the trace name. The trace name appears as the legend item and on hover. offsetgroup Set several traces linked to the same position axis or matching axes to the same offsetgroup where bars of the same position coordinate will line up. opacity Sets the opacity of the trace. orientation Only relevant in the following cases: 1. when `scattermode` is set to "group". 2. when `stackgroup` is used, and only the first `orientation` found in the `stackgroup` will be used - including if `visible` is "legendonly" but not if it is `false`. Sets the stacking direction. With "v" ("h"), the y (x) values of subsequent traces are added. Also affects the default value of `fill`. selected :class:`plotly.graph_objects.scatter.Selected` instance or dict with compatible properties selectedpoints Array containing integer indices of selected points. Has an effect only for traces that support selections. Note that an empty array means an empty selection where the `unselected` are turned on for all points, whereas, any other non-array values means no selection all where the `selected` and `unselected` styles have no effect. showlegend Determines whether or not an item corresponding to this trace is shown in the legend. stackgaps Only relevant when `stackgroup` is used, and only the first `stackgaps` found in the `stackgroup` will be used - including if `visible` is "legendonly" but not if it is `false`. Determines how we handle locations at which other traces in this group have data but this one does not. With *infer zero* we insert a zero at these locations. With "interpolate" we linearly interpolate between existing values, and extrapolate a constant beyond the existing values. stackgroup Set several scatter traces (on the same subplot) to the same stackgroup in order to add their y values (or their x values if `orientation` is "h"). If blank or omitted this trace will not be stacked. Stacking also turns `fill` on by default, using "tonexty" ("tonextx") if `orientation` is "h" ("v") and sets the default `mode` to "lines" irrespective of point count. You can only stack on a numeric (linear or log) axis. Traces in a `stackgroup` will only fill to (or be filled to) other traces in the same group. With multiple `stackgroup`s or some traces stacked and some not, if fill-linked traces are not already consecutive, the later ones will be pushed down in the drawing order. stream :class:`plotly.graph_objects.scatter.Stream` instance or dict with compatible properties text Sets text elements associated with each (x,y) pair. If a single string, the same string appears over all the data points. If an array of string, the items are mapped in order to the this trace's (x,y) coordinates. If trace `hoverinfo` contains a "text" flag and "hovertext" is not set, these elements will be seen in the hover labels. textfont Sets the text font. textposition Sets the positions of the `text` elements with respects to the (x,y) coordinates. textpositionsrc Sets the source reference on Chart Studio Cloud for `textposition`. textsrc Sets the source reference on Chart Studio Cloud for `text`. texttemplate Template string used for rendering the information text that appear on points. Note that this will override `textinfo`. Variables are inserted using %{variable}, for example "y: %{y}". Numbers are formatted using d3-format's syntax %{variable:d3-format}, for example "Price: %{y:$.2f}". https://github.com/d3/d3-format/tree/v1.4.5#d3-format for details on the formatting syntax. Dates are formatted using d3-time-format's syntax %{variable|d3-time-format}, for example "Day: %{2019-01-01|%A}". https://github.com/d3/d3-time- format/tree/v2.2.3#locale_format for details on the date formatting syntax. Every attributes that can be specified per-point (the ones that are `arrayOk: true`) are available. texttemplatesrc Sets the source reference on Chart Studio Cloud for `texttemplate`. uid Assign an id to this trace, Use this to provide object constancy between traces during animations and transitions. uirevision Controls persistence of some user-driven changes to the trace: `constraintrange` in `parcoords` traces, as well as some `editable: true` modifications such as `name` and `colorbar.title`. Defaults to `layout.uirevision`. Note that other user-driven trace attribute changes are controlled by `layout` attributes: `trace.visible` is controlled by `layout.legend.uirevision`, `selectedpoints` is controlled by `layout.selectionrevision`, and `colorbar.(x|y)` (accessible with `config: {editable: true}`) is controlled by `layout.editrevision`. Trace changes are tracked by `uid`, which only falls back on trace index if no `uid` is provided. So if your app can add/remove traces before the end of the `data` array, such that the same trace has a different index, you can still preserve user-driven changes if you give each trace a `uid` that stays with it as it moves. unselected :class:`plotly.graph_objects.scatter.Unselected` instance or dict with compatible properties visible Determines whether or not this trace is visible. If "legendonly", the trace is not drawn, but can appear as a legend item (provided that the legend itself is visible). x Sets the x coordinates. x0 Alternate to `x`. Builds a linear space of x coordinates. Use with `dx` where `x0` is the starting coordinate and `dx` the step. xaxis Sets a reference between this trace's x coordinates and a 2D cartesian x axis. If "x" (the default value), the x coordinates refer to `layout.xaxis`. If "x2", the x coordinates refer to `layout.xaxis2`, and so on. xcalendar Sets the calendar system to use with `x` date data. xhoverformat Sets the hover text formatting rulefor `x` using d3 formatting mini-languages which are very similar to those in Python. For numbers, see: https://github.com/d3/d3-format/tree/v1.4.5#d3-format. And for dates see: https://github.com/d3/d3-time- format/tree/v2.2.3#locale_format. We add two items to d3's date formatter: "%h" for half of the year as a decimal number as well as "%{n}f" for fractional seconds with n digits. For example, *2016-10-13 09:15:23.456* with tickformat "%H~%M~%S.%2f" would display *09~15~23.46*By default the values are formatted using `xaxis.hoverformat`. xperiod Only relevant when the axis `type` is "date". Sets the period positioning in milliseconds or "M" on the x axis. Special values in the form of "M" could be used to declare the number of months. In this case `n` must be a positive integer. xperiod0 Only relevant when the axis `type` is "date". Sets the base for period positioning in milliseconds or date string on the x0 axis. When `x0period` is round number of weeks, the `x0period0` by default would be on a Sunday i.e. 2000-01-02, otherwise it would be at 2000-01-01. xperiodalignment Only relevant when the axis `type` is "date". Sets the alignment of data points on the x axis. xsrc Sets the source reference on Chart Studio Cloud for `x`. y Sets the y coordinates. y0 Alternate to `y`. Builds a linear space of y coordinates. Use with `dy` where `y0` is the starting coordinate and `dy` the step. yaxis Sets a reference between this trace's y coordinates and a 2D cartesian y axis. If "y" (the default value), the y coordinates refer to `layout.yaxis`. If "y2", the y coordinates refer to `layout.yaxis2`, and so on. ycalendar Sets the calendar system to use with `y` date data. yhoverformat Sets the hover text formatting rulefor `y` using d3 formatting mini-languages which are very similar to those in Python. For numbers, see: https://github.com/d3/d3-format/tree/v1.4.5#d3-format. And for dates see: https://github.com/d3/d3-time- format/tree/v2.2.3#locale_format. We add two items to d3's date formatter: "%h" for half of the year as a decimal number as well as "%{n}f" for fractional seconds with n digits. For example, *2016-10-13 09:15:23.456* with tickformat "%H~%M~%S.%2f" would display *09~15~23.46*By default the values are formatted using `yaxis.hoverformat`. yperiod Only relevant when the axis `type` is "date". Sets the period positioning in milliseconds or "M" on the y axis. Special values in the form of "M" could be used to declare the number of months. In this case `n` must be a positive integer. yperiod0 Only relevant when the axis `type` is "date". Sets the base for period positioning in milliseconds or date string on the y0 axis. When `y0period` is round number of weeks, the `y0period0` by default would be on a Sunday i.e. 2000-01-02, otherwise it would be at 2000-01-01. yperiodalignment Only relevant when the axis `type` is "date". Sets the alignment of data points on the y axis. ysrc Sets the source reference on Chart Studio Cloud for `y`. """ def __init__( self, arg=None, alignmentgroup=None, cliponaxis=None, connectgaps=None, customdata=None, customdatasrc=None, dx=None, dy=None, error_x=None, error_y=None, fill=None, fillcolor=None, fillpattern=None, groupnorm=None, hoverinfo=None, hoverinfosrc=None, hoverlabel=None, hoveron=None, hovertemplate=None, hovertemplatesrc=None, hovertext=None, hovertextsrc=None, ids=None, idssrc=None, legend=None, legendgroup=None, legendgrouptitle=None, legendrank=None, legendwidth=None, line=None, marker=None, meta=None, metasrc=None, mode=None, name=None, offsetgroup=None, opacity=None, orientation=None, selected=None, selectedpoints=None, showlegend=None, stackgaps=None, stackgroup=None, stream=None, text=None, textfont=None, textposition=None, textpositionsrc=None, textsrc=None, texttemplate=None, texttemplatesrc=None, uid=None, uirevision=None, unselected=None, visible=None, x=None, x0=None, xaxis=None, xcalendar=None, xhoverformat=None, xperiod=None, xperiod0=None, xperiodalignment=None, xsrc=None, y=None, y0=None, yaxis=None, ycalendar=None, yhoverformat=None, yperiod=None, yperiod0=None, yperiodalignment=None, ysrc=None, **kwargs, ): """ Construct a new Scatter object The scatter trace type encompasses line charts, scatter charts, text charts, and bubble charts. The data visualized as scatter point or lines is set in `x` and `y`. Text (appearing either on the chart or on hover only) is via `text`. Bubble charts are achieved by setting `marker.size` and/or `marker.color` to numerical arrays. Parameters ---------- arg dict of properties compatible with this constructor or an instance of :class:`plotly.graph_objs.Scatter` alignmentgroup Set several traces linked to the same position axis or matching axes to the same alignmentgroup. This controls whether bars compute their positional range dependently or independently. cliponaxis Determines whether or not markers and text nodes are clipped about the subplot axes. To show markers and text nodes above axis lines and tick labels, make sure to set `xaxis.layer` and `yaxis.layer` to *below traces*. connectgaps Determines whether or not gaps (i.e. {nan} or missing values) in the provided data arrays are connected. customdata Assigns extra data each datum. This may be useful when listening to hover, click and selection events. Note that, "scatter" traces also appends customdata items in the markers DOM elements customdatasrc Sets the source reference on Chart Studio Cloud for `customdata`. dx Sets the x coordinate step. See `x0` for more info. dy Sets the y coordinate step. See `y0` for more info. error_x :class:`plotly.graph_objects.scatter.ErrorX` instance or dict with compatible properties error_y :class:`plotly.graph_objects.scatter.ErrorY` instance or dict with compatible properties fill Sets the area to fill with a solid color. Defaults to "none" unless this trace is stacked, then it gets "tonexty" ("tonextx") if `orientation` is "v" ("h") Use with `fillcolor` if not "none". "tozerox" and "tozeroy" fill to x=0 and y=0 respectively. "tonextx" and "tonexty" fill between the endpoints of this trace and the endpoints of the trace before it, connecting those endpoints with straight lines (to make a stacked area graph); if there is no trace before it, they behave like "tozerox" and "tozeroy". "toself" connects the endpoints of the trace (or each segment of the trace if it has gaps) into a closed shape. "tonext" fills the space between two traces if one completely encloses the other (eg consecutive contour lines), and behaves like "toself" if there is no trace before it. "tonext" should not be used if one trace does not enclose the other. Traces in a `stackgroup` will only fill to (or be filled to) other traces in the same group. With multiple `stackgroup`s or some traces stacked and some not, if fill-linked traces are not already consecutive, the later ones will be pushed down in the drawing order. fillcolor Sets the fill color. Defaults to a half-transparent variant of the line color, marker color, or marker line color, whichever is available. fillpattern Sets the pattern within the marker. groupnorm Only relevant when `stackgroup` is used, and only the first `groupnorm` found in the `stackgroup` will be used - including if `visible` is "legendonly" but not if it is `false`. Sets the normalization for the sum of this `stackgroup`. With "fraction", the value of each trace at each location is divided by the sum of all trace values at that location. "percent" is the same but multiplied by 100 to show percentages. If there are multiple subplots, or multiple `stackgroup`s on one subplot, each will be normalized within its own set. hoverinfo Determines which trace information appear on hover. If `none` or `skip` are set, no information is displayed upon hovering. But, if `none` is set, click and hover events are still fired. hoverinfosrc Sets the source reference on Chart Studio Cloud for `hoverinfo`. hoverlabel :class:`plotly.graph_objects.scatter.Hoverlabel` instance or dict with compatible properties hoveron Do the hover effects highlight individual points (markers or line points) or do they highlight filled regions? If the fill is "toself" or "tonext" and there are no markers or text, then the default is "fills", otherwise it is "points". hovertemplate Template string used for rendering the information that appear on hover box. Note that this will override `hoverinfo`. Variables are inserted using %{variable}, for example "y: %{y}" as well as %{xother}, {%_xother}, {%_xother_}, {%xother_}. When showing info for several points, "xother" will be added to those with different x positions from the first point. An underscore before or after "(x|y)other" will add a space on that side, only when this field is shown. Numbers are formatted using d3-format's syntax %{variable:d3-format}, for example "Price: %{y:$.2f}". https://github.com/d3/d3-format/tree/v1.4.5#d3-format for details on the formatting syntax. Dates are formatted using d3-time-format's syntax %{variable|d3-time-format}, for example "Day: %{2019-01-01|%A}". https://github.com/d3/d3-time- format/tree/v2.2.3#locale_format for details on the date formatting syntax. The variables available in `hovertemplate` are the ones emitted as event data described at this link https://plotly.com/javascript/plotlyjs-events/#event- data. Additionally, every attributes that can be specified per-point (the ones that are `arrayOk: true`) are available. Anything contained in tag `` is displayed in the secondary box, for example "{fullData.name}". To hide the secondary box completely, use an empty tag ``. hovertemplatesrc Sets the source reference on Chart Studio Cloud for `hovertemplate`. hovertext Sets hover text elements associated with each (x,y) pair. If a single string, the same string appears over all the data points. If an array of string, the items are mapped in order to the this trace's (x,y) coordinates. To be seen, trace `hoverinfo` must contain a "text" flag. hovertextsrc Sets the source reference on Chart Studio Cloud for `hovertext`. ids Assigns id labels to each datum. These ids for object constancy of data points during animation. Should be an array of strings, not numbers or any other type. idssrc Sets the source reference on Chart Studio Cloud for `ids`. legend Sets the reference to a legend to show this trace in. References to these legends are "legend", "legend2", "legend3", etc. Settings for these legends are set in the layout, under `layout.legend`, `layout.legend2`, etc. legendgroup Sets the legend group for this trace. Traces and shapes part of the same legend group hide/show at the same time when toggling legend items. legendgrouptitle :class:`plotly.graph_objects.scatter.Legendgrouptitle` instance or dict with compatible properties legendrank Sets the legend rank for this trace. Items and groups with smaller ranks are presented on top/left side while with "reversed" `legend.traceorder` they are on bottom/right side. The default legendrank is 1000, so that you can use ranks less than 1000 to place certain items before all unranked items, and ranks greater than 1000 to go after all unranked items. When having unranked or equal rank items shapes would be displayed after traces i.e. according to their order in data and layout. legendwidth Sets the width (in px or fraction) of the legend for this trace. line :class:`plotly.graph_objects.scatter.Line` instance or dict with compatible properties marker :class:`plotly.graph_objects.scatter.Marker` instance or dict with compatible properties meta Assigns extra meta information associated with this trace that can be used in various text attributes. Attributes such as trace `name`, graph, axis and colorbar `title.text`, annotation `text` `rangeselector`, `updatemenues` and `sliders` `label` text all support `meta`. To access the trace `meta` values in an attribute in the same trace, simply use `%{meta[i]}` where `i` is the index or key of the `meta` item in question. To access trace `meta` in layout attributes, use `%{data[n[.meta[i]}` where `i` is the index or key of the `meta` and `n` is the trace index. metasrc Sets the source reference on Chart Studio Cloud for `meta`. mode Determines the drawing mode for this scatter trace. If the provided `mode` includes "text" then the `text` elements appear at the coordinates. Otherwise, the `text` elements appear on hover. If there are less than 20 points and the trace is not stacked then the default is "lines+markers". Otherwise, "lines". name Sets the trace name. The trace name appears as the legend item and on hover. offsetgroup Set several traces linked to the same position axis or matching axes to the same offsetgroup where bars of the same position coordinate will line up. opacity Sets the opacity of the trace. orientation Only relevant in the following cases: 1. when `scattermode` is set to "group". 2. when `stackgroup` is used, and only the first `orientation` found in the `stackgroup` will be used - including if `visible` is "legendonly" but not if it is `false`. Sets the stacking direction. With "v" ("h"), the y (x) values of subsequent traces are added. Also affects the default value of `fill`. selected :class:`plotly.graph_objects.scatter.Selected` instance or dict with compatible properties selectedpoints Array containing integer indices of selected points. Has an effect only for traces that support selections. Note that an empty array means an empty selection where the `unselected` are turned on for all points, whereas, any other non-array values means no selection all where the `selected` and `unselected` styles have no effect. showlegend Determines whether or not an item corresponding to this trace is shown in the legend. stackgaps Only relevant when `stackgroup` is used, and only the first `stackgaps` found in the `stackgroup` will be used - including if `visible` is "legendonly" but not if it is `false`. Determines how we handle locations at which other traces in this group have data but this one does not. With *infer zero* we insert a zero at these locations. With "interpolate" we linearly interpolate between existing values, and extrapolate a constant beyond the existing values. stackgroup Set several scatter traces (on the same subplot) to the same stackgroup in order to add their y values (or their x values if `orientation` is "h"). If blank or omitted this trace will not be stacked. Stacking also turns `fill` on by default, using "tonexty" ("tonextx") if `orientation` is "h" ("v") and sets the default `mode` to "lines" irrespective of point count. You can only stack on a numeric (linear or log) axis. Traces in a `stackgroup` will only fill to (or be filled to) other traces in the same group. With multiple `stackgroup`s or some traces stacked and some not, if fill-linked traces are not already consecutive, the later ones will be pushed down in the drawing order. stream :class:`plotly.graph_objects.scatter.Stream` instance or dict with compatible properties text Sets text elements associated with each (x,y) pair. If a single string, the same string appears over all the data points. If an array of string, the items are mapped in order to the this trace's (x,y) coordinates. If trace `hoverinfo` contains a "text" flag and "hovertext" is not set, these elements will be seen in the hover labels. textfont Sets the text font. textposition Sets the positions of the `text` elements with respects to the (x,y) coordinates. textpositionsrc Sets the source reference on Chart Studio Cloud for `textposition`. textsrc Sets the source reference on Chart Studio Cloud for `text`. texttemplate Template string used for rendering the information text that appear on points. Note that this will override `textinfo`. Variables are inserted using %{variable}, for example "y: %{y}". Numbers are formatted using d3-format's syntax %{variable:d3-format}, for example "Price: %{y:$.2f}". https://github.com/d3/d3-format/tree/v1.4.5#d3-format for details on the formatting syntax. Dates are formatted using d3-time-format's syntax %{variable|d3-time-format}, for example "Day: %{2019-01-01|%A}". https://github.com/d3/d3-time- format/tree/v2.2.3#locale_format for details on the date formatting syntax. Every attributes that can be specified per-point (the ones that are `arrayOk: true`) are available. texttemplatesrc Sets the source reference on Chart Studio Cloud for `texttemplate`. uid Assign an id to this trace, Use this to provide object constancy between traces during animations and transitions. uirevision Controls persistence of some user-driven changes to the trace: `constraintrange` in `parcoords` traces, as well as some `editable: true` modifications such as `name` and `colorbar.title`. Defaults to `layout.uirevision`. Note that other user-driven trace attribute changes are controlled by `layout` attributes: `trace.visible` is controlled by `layout.legend.uirevision`, `selectedpoints` is controlled by `layout.selectionrevision`, and `colorbar.(x|y)` (accessible with `config: {editable: true}`) is controlled by `layout.editrevision`. Trace changes are tracked by `uid`, which only falls back on trace index if no `uid` is provided. So if your app can add/remove traces before the end of the `data` array, such that the same trace has a different index, you can still preserve user-driven changes if you give each trace a `uid` that stays with it as it moves. unselected :class:`plotly.graph_objects.scatter.Unselected` instance or dict with compatible properties visible Determines whether or not this trace is visible. If "legendonly", the trace is not drawn, but can appear as a legend item (provided that the legend itself is visible). x Sets the x coordinates. x0 Alternate to `x`. Builds a linear space of x coordinates. Use with `dx` where `x0` is the starting coordinate and `dx` the step. xaxis Sets a reference between this trace's x coordinates and a 2D cartesian x axis. If "x" (the default value), the x coordinates refer to `layout.xaxis`. If "x2", the x coordinates refer to `layout.xaxis2`, and so on. xcalendar Sets the calendar system to use with `x` date data. xhoverformat Sets the hover text formatting rulefor `x` using d3 formatting mini-languages which are very similar to those in Python. For numbers, see: https://github.com/d3/d3-format/tree/v1.4.5#d3-format. And for dates see: https://github.com/d3/d3-time- format/tree/v2.2.3#locale_format. We add two items to d3's date formatter: "%h" for half of the year as a decimal number as well as "%{n}f" for fractional seconds with n digits. For example, *2016-10-13 09:15:23.456* with tickformat "%H~%M~%S.%2f" would display *09~15~23.46*By default the values are formatted using `xaxis.hoverformat`. xperiod Only relevant when the axis `type` is "date". Sets the period positioning in milliseconds or "M" on the x axis. Special values in the form of "M" could be used to declare the number of months. In this case `n` must be a positive integer. xperiod0 Only relevant when the axis `type` is "date". Sets the base for period positioning in milliseconds or date string on the x0 axis. When `x0period` is round number of weeks, the `x0period0` by default would be on a Sunday i.e. 2000-01-02, otherwise it would be at 2000-01-01. xperiodalignment Only relevant when the axis `type` is "date". Sets the alignment of data points on the x axis. xsrc Sets the source reference on Chart Studio Cloud for `x`. y Sets the y coordinates. y0 Alternate to `y`. Builds a linear space of y coordinates. Use with `dy` where `y0` is the starting coordinate and `dy` the step. yaxis Sets a reference between this trace's y coordinates and a 2D cartesian y axis. If "y" (the default value), the y coordinates refer to `layout.yaxis`. If "y2", the y coordinates refer to `layout.yaxis2`, and so on. ycalendar Sets the calendar system to use with `y` date data. yhoverformat Sets the hover text formatting rulefor `y` using d3 formatting mini-languages which are very similar to those in Python. For numbers, see: https://github.com/d3/d3-format/tree/v1.4.5#d3-format. And for dates see: https://github.com/d3/d3-time- format/tree/v2.2.3#locale_format. We add two items to d3's date formatter: "%h" for half of the year as a decimal number as well as "%{n}f" for fractional seconds with n digits. For example, *2016-10-13 09:15:23.456* with tickformat "%H~%M~%S.%2f" would display *09~15~23.46*By default the values are formatted using `yaxis.hoverformat`. yperiod Only relevant when the axis `type` is "date". Sets the period positioning in milliseconds or "M" on the y axis. Special values in the form of "M" could be used to declare the number of months. In this case `n` must be a positive integer. yperiod0 Only relevant when the axis `type` is "date". Sets the base for period positioning in milliseconds or date string on the y0 axis. When `y0period` is round number of weeks, the `y0period0` by default would be on a Sunday i.e. 2000-01-02, otherwise it would be at 2000-01-01. yperiodalignment Only relevant when the axis `type` is "date". Sets the alignment of data points on the y axis. ysrc Sets the source reference on Chart Studio Cloud for `y`. Returns ------- Scatter """ super(Scatter, self).__init__("scatter") if "_parent" in kwargs: self._parent = kwargs["_parent"] return # Validate arg # ------------ if arg is None: arg = {} elif isinstance(arg, self.__class__): arg = arg.to_plotly_json() elif isinstance(arg, dict): arg = _copy.copy(arg) else: raise ValueError( """\ The first argument to the plotly.graph_objs.Scatter constructor must be a dict or an instance of :class:`plotly.graph_objs.Scatter`""" ) # Handle skip_invalid # ------------------- self._skip_invalid = kwargs.pop("skip_invalid", False) self._validate = kwargs.pop("_validate", True) # Populate data dict with properties # ---------------------------------- _v = arg.pop("alignmentgroup", None) _v = alignmentgroup if alignmentgroup is not None else _v if _v is not None: self["alignmentgroup"] = _v _v = arg.pop("cliponaxis", None) _v = cliponaxis if cliponaxis is not None else _v if _v is not None: self["cliponaxis"] = _v _v = arg.pop("connectgaps", None) _v = connectgaps if connectgaps is not None else _v if _v is not None: self["connectgaps"] = _v _v = arg.pop("customdata", None) _v = customdata if customdata is not None else _v if _v is not None: self["customdata"] = _v _v = arg.pop("customdatasrc", None) _v = customdatasrc if customdatasrc is not None else _v if _v is not None: self["customdatasrc"] = _v _v = arg.pop("dx", None) _v = dx if dx is not None else _v if _v is not None: self["dx"] = _v _v = arg.pop("dy", None) _v = dy if dy is not None else _v if _v is not None: self["dy"] = _v _v = arg.pop("error_x", None) _v = error_x if error_x is not None else _v if _v is not None: self["error_x"] = _v _v = arg.pop("error_y", None) _v = error_y if error_y is not None else _v if _v is not None: self["error_y"] = _v _v = arg.pop("fill", None) _v = fill if fill is not None else _v if _v is not None: self["fill"] = _v _v = arg.pop("fillcolor", None) _v = fillcolor if fillcolor is not None else _v if _v is not None: self["fillcolor"] = _v _v = arg.pop("fillpattern", None) _v = fillpattern if fillpattern is not None else _v if _v is not None: self["fillpattern"] = _v _v = arg.pop("groupnorm", None) _v = groupnorm if groupnorm is not None else _v if _v is not None: self["groupnorm"] = _v _v = arg.pop("hoverinfo", None) _v = hoverinfo if hoverinfo is not None else _v if _v is not None: self["hoverinfo"] = _v _v = arg.pop("hoverinfosrc", None) _v = hoverinfosrc if hoverinfosrc is not None else _v if _v is not None: self["hoverinfosrc"] = _v _v = arg.pop("hoverlabel", None) _v = hoverlabel if hoverlabel is not None else _v if _v is not None: self["hoverlabel"] = _v _v = arg.pop("hoveron", None) _v = hoveron if hoveron is not None else _v if _v is not None: self["hoveron"] = _v _v = arg.pop("hovertemplate", None) _v = hovertemplate if hovertemplate is not None else _v if _v is not None: self["hovertemplate"] = _v _v = arg.pop("hovertemplatesrc", None) _v = hovertemplatesrc if hovertemplatesrc is not None else _v if _v is not None: self["hovertemplatesrc"] = _v _v = arg.pop("hovertext", None) _v = hovertext if hovertext is not None else _v if _v is not None: self["hovertext"] = _v _v = arg.pop("hovertextsrc", None) _v = hovertextsrc if hovertextsrc is not None else _v if _v is not None: self["hovertextsrc"] = _v _v = arg.pop("ids", None) _v = ids if ids is not None else _v if _v is not None: self["ids"] = _v _v = arg.pop("idssrc", None) _v = idssrc if idssrc is not None else _v if _v is not None: self["idssrc"] = _v _v = arg.pop("legend", None) _v = legend if legend is not None else _v if _v is not None: self["legend"] = _v _v = arg.pop("legendgroup", None) _v = legendgroup if legendgroup is not None else _v if _v is not None: self["legendgroup"] = _v _v = arg.pop("legendgrouptitle", None) _v = legendgrouptitle if legendgrouptitle is not None else _v if _v is not None: self["legendgrouptitle"] = _v _v = arg.pop("legendrank", None) _v = legendrank if legendrank is not None else _v if _v is not None: self["legendrank"] = _v _v = arg.pop("legendwidth", None) _v = legendwidth if legendwidth is not None else _v if _v is not None: self["legendwidth"] = _v _v = arg.pop("line", None) _v = line if line is not None else _v if _v is not None: self["line"] = _v _v = arg.pop("marker", None) _v = marker if marker is not None else _v if _v is not None: self["marker"] = _v _v = arg.pop("meta", None) _v = meta if meta is not None else _v if _v is not None: self["meta"] = _v _v = arg.pop("metasrc", None) _v = metasrc if metasrc is not None else _v if _v is not None: self["metasrc"] = _v _v = arg.pop("mode", None) _v = mode if mode is not None else _v if _v is not None: self["mode"] = _v _v = arg.pop("name", None) _v = name if name is not None else _v if _v is not None: self["name"] = _v _v = arg.pop("offsetgroup", None) _v = offsetgroup if offsetgroup is not None else _v if _v is not None: self["offsetgroup"] = _v _v = arg.pop("opacity", None) _v = opacity if opacity is not None else _v if _v is not None: self["opacity"] = _v _v = arg.pop("orientation", None) _v = orientation if orientation is not None else _v if _v is not None: self["orientation"] = _v _v = arg.pop("selected", None) _v = selected if selected is not None else _v if _v is not None: self["selected"] = _v _v = arg.pop("selectedpoints", None) _v = selectedpoints if selectedpoints is not None else _v if _v is not None: self["selectedpoints"] = _v _v = arg.pop("showlegend", None) _v = showlegend if showlegend is not None else _v if _v is not None: self["showlegend"] = _v _v = arg.pop("stackgaps", None) _v = stackgaps if stackgaps is not None else _v if _v is not None: self["stackgaps"] = _v _v = arg.pop("stackgroup", None) _v = stackgroup if stackgroup is not None else _v if _v is not None: self["stackgroup"] = _v _v = arg.pop("stream", None) _v = stream if stream is not None else _v if _v is not None: self["stream"] = _v _v = arg.pop("text", None) _v = text if text is not None else _v if _v is not None: self["text"] = _v _v = arg.pop("textfont", None) _v = textfont if textfont is not None else _v if _v is not None: self["textfont"] = _v _v = arg.pop("textposition", None) _v = textposition if textposition is not None else _v if _v is not None: self["textposition"] = _v _v = arg.pop("textpositionsrc", None) _v = textpositionsrc if textpositionsrc is not None else _v if _v is not None: self["textpositionsrc"] = _v _v = arg.pop("textsrc", None) _v = textsrc if textsrc is not None else _v if _v is not None: self["textsrc"] = _v _v = arg.pop("texttemplate", None) _v = texttemplate if texttemplate is not None else _v if _v is not None: self["texttemplate"] = _v _v = arg.pop("texttemplatesrc", None) _v = texttemplatesrc if texttemplatesrc is not None else _v if _v is not None: self["texttemplatesrc"] = _v _v = arg.pop("uid", None) _v = uid if uid is not None else _v if _v is not None: self["uid"] = _v _v = arg.pop("uirevision", None) _v = uirevision if uirevision is not None else _v if _v is not None: self["uirevision"] = _v _v = arg.pop("unselected", None) _v = unselected if unselected is not None else _v if _v is not None: self["unselected"] = _v _v = arg.pop("visible", None) _v = visible if visible is not None else _v if _v is not None: self["visible"] = _v _v = arg.pop("x", None) _v = x if x is not None else _v if _v is not None: self["x"] = _v _v = arg.pop("x0", None) _v = x0 if x0 is not None else _v if _v is not None: self["x0"] = _v _v = arg.pop("xaxis", None) _v = xaxis if xaxis is not None else _v if _v is not None: self["xaxis"] = _v _v = arg.pop("xcalendar", None) _v = xcalendar if xcalendar is not None else _v if _v is not None: self["xcalendar"] = _v _v = arg.pop("xhoverformat", None) _v = xhoverformat if xhoverformat is not None else _v if _v is not None: self["xhoverformat"] = _v _v = arg.pop("xperiod", None) _v = xperiod if xperiod is not None else _v if _v is not None: self["xperiod"] = _v _v = arg.pop("xperiod0", None) _v = xperiod0 if xperiod0 is not None else _v if _v is not None: self["xperiod0"] = _v _v = arg.pop("xperiodalignment", None) _v = xperiodalignment if xperiodalignment is not None else _v if _v is not None: self["xperiodalignment"] = _v _v = arg.pop("xsrc", None) _v = xsrc if xsrc is not None else _v if _v is not None: self["xsrc"] = _v _v = arg.pop("y", None) _v = y if y is not None else _v if _v is not None: self["y"] = _v _v = arg.pop("y0", None) _v = y0 if y0 is not None else _v if _v is not None: self["y0"] = _v _v = arg.pop("yaxis", None) _v = yaxis if yaxis is not None else _v if _v is not None: self["yaxis"] = _v _v = arg.pop("ycalendar", None) _v = ycalendar if ycalendar is not None else _v if _v is not None: self["ycalendar"] = _v _v = arg.pop("yhoverformat", None) _v = yhoverformat if yhoverformat is not None else _v if _v is not None: self["yhoverformat"] = _v _v = arg.pop("yperiod", None) _v = yperiod if yperiod is not None else _v if _v is not None: self["yperiod"] = _v _v = arg.pop("yperiod0", None) _v = yperiod0 if yperiod0 is not None else _v if _v is not None: self["yperiod0"] = _v _v = arg.pop("yperiodalignment", None) _v = yperiodalignment if yperiodalignment is not None else _v if _v is not None: self["yperiodalignment"] = _v _v = arg.pop("ysrc", None) _v = ysrc if ysrc is not None else _v if _v is not None: self["ysrc"] = _v # Read-only literals # ------------------ self._props["type"] = "scatter" arg.pop("type", None) # Process unknown kwargs # ---------------------- self._process_kwargs(**dict(arg, **kwargs)) # Reset skip_invalid # ------------------ self._skip_invalid = False