585 lines
19 KiB
Python
585 lines
19 KiB
Python
import logging
|
|
import warnings
|
|
from os import PathLike
|
|
from os.path import basename, splitext
|
|
from typing import Any, BinaryIO, List, Optional, Set
|
|
|
|
from .cd import (
|
|
coherence_ratio,
|
|
encoding_languages,
|
|
mb_encoding_languages,
|
|
merge_coherence_ratios,
|
|
)
|
|
from .constant import IANA_SUPPORTED, TOO_BIG_SEQUENCE, TOO_SMALL_SEQUENCE, TRACE
|
|
from .md import mess_ratio
|
|
from .models import CharsetMatch, CharsetMatches
|
|
from .utils import (
|
|
any_specified_encoding,
|
|
cut_sequence_chunks,
|
|
iana_name,
|
|
identify_sig_or_bom,
|
|
is_cp_similar,
|
|
is_multi_byte_encoding,
|
|
should_strip_sig_or_bom,
|
|
)
|
|
|
|
# Will most likely be controversial
|
|
# logging.addLevelName(TRACE, "TRACE")
|
|
logger = logging.getLogger("charset_normalizer")
|
|
explain_handler = logging.StreamHandler()
|
|
explain_handler.setFormatter(
|
|
logging.Formatter("%(asctime)s | %(levelname)s | %(message)s")
|
|
)
|
|
|
|
|
|
def from_bytes(
|
|
sequences: bytes,
|
|
steps: int = 5,
|
|
chunk_size: int = 512,
|
|
threshold: float = 0.2,
|
|
cp_isolation: Optional[List[str]] = None,
|
|
cp_exclusion: Optional[List[str]] = None,
|
|
preemptive_behaviour: bool = True,
|
|
explain: bool = False,
|
|
) -> CharsetMatches:
|
|
"""
|
|
Given a raw bytes sequence, return the best possibles charset usable to render str objects.
|
|
If there is no results, it is a strong indicator that the source is binary/not text.
|
|
By default, the process will extract 5 blocs of 512o each to assess the mess and coherence of a given sequence.
|
|
And will give up a particular code page after 20% of measured mess. Those criteria are customizable at will.
|
|
|
|
The preemptive behavior DOES NOT replace the traditional detection workflow, it prioritize a particular code page
|
|
but never take it for granted. Can improve the performance.
|
|
|
|
You may want to focus your attention to some code page or/and not others, use cp_isolation and cp_exclusion for that
|
|
purpose.
|
|
|
|
This function will strip the SIG in the payload/sequence every time except on UTF-16, UTF-32.
|
|
By default the library does not setup any handler other than the NullHandler, if you choose to set the 'explain'
|
|
toggle to True it will alter the logger configuration to add a StreamHandler that is suitable for debugging.
|
|
Custom logging format and handler can be set manually.
|
|
"""
|
|
|
|
if not isinstance(sequences, (bytearray, bytes)):
|
|
raise TypeError(
|
|
"Expected object of type bytes or bytearray, got: {0}".format(
|
|
type(sequences)
|
|
)
|
|
)
|
|
|
|
if explain:
|
|
previous_logger_level: int = logger.level
|
|
logger.addHandler(explain_handler)
|
|
logger.setLevel(TRACE)
|
|
|
|
length: int = len(sequences)
|
|
|
|
if length == 0:
|
|
logger.debug("Encoding detection on empty bytes, assuming utf_8 intention.")
|
|
if explain:
|
|
logger.removeHandler(explain_handler)
|
|
logger.setLevel(previous_logger_level or logging.WARNING)
|
|
return CharsetMatches([CharsetMatch(sequences, "utf_8", 0.0, False, [], "")])
|
|
|
|
if cp_isolation is not None:
|
|
logger.log(
|
|
TRACE,
|
|
"cp_isolation is set. use this flag for debugging purpose. "
|
|
"limited list of encoding allowed : %s.",
|
|
", ".join(cp_isolation),
|
|
)
|
|
cp_isolation = [iana_name(cp, False) for cp in cp_isolation]
|
|
else:
|
|
cp_isolation = []
|
|
|
|
if cp_exclusion is not None:
|
|
logger.log(
|
|
TRACE,
|
|
"cp_exclusion is set. use this flag for debugging purpose. "
|
|
"limited list of encoding excluded : %s.",
|
|
", ".join(cp_exclusion),
|
|
)
|
|
cp_exclusion = [iana_name(cp, False) for cp in cp_exclusion]
|
|
else:
|
|
cp_exclusion = []
|
|
|
|
if length <= (chunk_size * steps):
|
|
logger.log(
|
|
TRACE,
|
|
"override steps (%i) and chunk_size (%i) as content does not fit (%i byte(s) given) parameters.",
|
|
steps,
|
|
chunk_size,
|
|
length,
|
|
)
|
|
steps = 1
|
|
chunk_size = length
|
|
|
|
if steps > 1 and length / steps < chunk_size:
|
|
chunk_size = int(length / steps)
|
|
|
|
is_too_small_sequence: bool = len(sequences) < TOO_SMALL_SEQUENCE
|
|
is_too_large_sequence: bool = len(sequences) >= TOO_BIG_SEQUENCE
|
|
|
|
if is_too_small_sequence:
|
|
logger.log(
|
|
TRACE,
|
|
"Trying to detect encoding from a tiny portion of ({}) byte(s).".format(
|
|
length
|
|
),
|
|
)
|
|
elif is_too_large_sequence:
|
|
logger.log(
|
|
TRACE,
|
|
"Using lazy str decoding because the payload is quite large, ({}) byte(s).".format(
|
|
length
|
|
),
|
|
)
|
|
|
|
prioritized_encodings: List[str] = []
|
|
|
|
specified_encoding: Optional[str] = (
|
|
any_specified_encoding(sequences) if preemptive_behaviour else None
|
|
)
|
|
|
|
if specified_encoding is not None:
|
|
prioritized_encodings.append(specified_encoding)
|
|
logger.log(
|
|
TRACE,
|
|
"Detected declarative mark in sequence. Priority +1 given for %s.",
|
|
specified_encoding,
|
|
)
|
|
|
|
tested: Set[str] = set()
|
|
tested_but_hard_failure: List[str] = []
|
|
tested_but_soft_failure: List[str] = []
|
|
|
|
fallback_ascii: Optional[CharsetMatch] = None
|
|
fallback_u8: Optional[CharsetMatch] = None
|
|
fallback_specified: Optional[CharsetMatch] = None
|
|
|
|
results: CharsetMatches = CharsetMatches()
|
|
|
|
sig_encoding, sig_payload = identify_sig_or_bom(sequences)
|
|
|
|
if sig_encoding is not None:
|
|
prioritized_encodings.append(sig_encoding)
|
|
logger.log(
|
|
TRACE,
|
|
"Detected a SIG or BOM mark on first %i byte(s). Priority +1 given for %s.",
|
|
len(sig_payload),
|
|
sig_encoding,
|
|
)
|
|
|
|
prioritized_encodings.append("ascii")
|
|
|
|
if "utf_8" not in prioritized_encodings:
|
|
prioritized_encodings.append("utf_8")
|
|
|
|
for encoding_iana in prioritized_encodings + IANA_SUPPORTED:
|
|
|
|
if cp_isolation and encoding_iana not in cp_isolation:
|
|
continue
|
|
|
|
if cp_exclusion and encoding_iana in cp_exclusion:
|
|
continue
|
|
|
|
if encoding_iana in tested:
|
|
continue
|
|
|
|
tested.add(encoding_iana)
|
|
|
|
decoded_payload: Optional[str] = None
|
|
bom_or_sig_available: bool = sig_encoding == encoding_iana
|
|
strip_sig_or_bom: bool = bom_or_sig_available and should_strip_sig_or_bom(
|
|
encoding_iana
|
|
)
|
|
|
|
if encoding_iana in {"utf_16", "utf_32"} and not bom_or_sig_available:
|
|
logger.log(
|
|
TRACE,
|
|
"Encoding %s wont be tested as-is because it require a BOM. Will try some sub-encoder LE/BE.",
|
|
encoding_iana,
|
|
)
|
|
continue
|
|
|
|
try:
|
|
is_multi_byte_decoder: bool = is_multi_byte_encoding(encoding_iana)
|
|
except (ModuleNotFoundError, ImportError):
|
|
logger.log(
|
|
TRACE,
|
|
"Encoding %s does not provide an IncrementalDecoder",
|
|
encoding_iana,
|
|
)
|
|
continue
|
|
|
|
try:
|
|
if is_too_large_sequence and is_multi_byte_decoder is False:
|
|
str(
|
|
sequences[: int(50e4)]
|
|
if strip_sig_or_bom is False
|
|
else sequences[len(sig_payload) : int(50e4)],
|
|
encoding=encoding_iana,
|
|
)
|
|
else:
|
|
decoded_payload = str(
|
|
sequences
|
|
if strip_sig_or_bom is False
|
|
else sequences[len(sig_payload) :],
|
|
encoding=encoding_iana,
|
|
)
|
|
except (UnicodeDecodeError, LookupError) as e:
|
|
if not isinstance(e, LookupError):
|
|
logger.log(
|
|
TRACE,
|
|
"Code page %s does not fit given bytes sequence at ALL. %s",
|
|
encoding_iana,
|
|
str(e),
|
|
)
|
|
tested_but_hard_failure.append(encoding_iana)
|
|
continue
|
|
|
|
similar_soft_failure_test: bool = False
|
|
|
|
for encoding_soft_failed in tested_but_soft_failure:
|
|
if is_cp_similar(encoding_iana, encoding_soft_failed):
|
|
similar_soft_failure_test = True
|
|
break
|
|
|
|
if similar_soft_failure_test:
|
|
logger.log(
|
|
TRACE,
|
|
"%s is deemed too similar to code page %s and was consider unsuited already. Continuing!",
|
|
encoding_iana,
|
|
encoding_soft_failed,
|
|
)
|
|
continue
|
|
|
|
r_ = range(
|
|
0 if not bom_or_sig_available else len(sig_payload),
|
|
length,
|
|
int(length / steps),
|
|
)
|
|
|
|
multi_byte_bonus: bool = (
|
|
is_multi_byte_decoder
|
|
and decoded_payload is not None
|
|
and len(decoded_payload) < length
|
|
)
|
|
|
|
if multi_byte_bonus:
|
|
logger.log(
|
|
TRACE,
|
|
"Code page %s is a multi byte encoding table and it appear that at least one character "
|
|
"was encoded using n-bytes.",
|
|
encoding_iana,
|
|
)
|
|
|
|
max_chunk_gave_up: int = int(len(r_) / 4)
|
|
|
|
max_chunk_gave_up = max(max_chunk_gave_up, 2)
|
|
early_stop_count: int = 0
|
|
lazy_str_hard_failure = False
|
|
|
|
md_chunks: List[str] = []
|
|
md_ratios = []
|
|
|
|
try:
|
|
for chunk in cut_sequence_chunks(
|
|
sequences,
|
|
encoding_iana,
|
|
r_,
|
|
chunk_size,
|
|
bom_or_sig_available,
|
|
strip_sig_or_bom,
|
|
sig_payload,
|
|
is_multi_byte_decoder,
|
|
decoded_payload,
|
|
):
|
|
md_chunks.append(chunk)
|
|
|
|
md_ratios.append(mess_ratio(chunk, threshold))
|
|
|
|
if md_ratios[-1] >= threshold:
|
|
early_stop_count += 1
|
|
|
|
if (early_stop_count >= max_chunk_gave_up) or (
|
|
bom_or_sig_available and strip_sig_or_bom is False
|
|
):
|
|
break
|
|
except UnicodeDecodeError as e: # Lazy str loading may have missed something there
|
|
logger.log(
|
|
TRACE,
|
|
"LazyStr Loading: After MD chunk decode, code page %s does not fit given bytes sequence at ALL. %s",
|
|
encoding_iana,
|
|
str(e),
|
|
)
|
|
early_stop_count = max_chunk_gave_up
|
|
lazy_str_hard_failure = True
|
|
|
|
# We might want to check the sequence again with the whole content
|
|
# Only if initial MD tests passes
|
|
if (
|
|
not lazy_str_hard_failure
|
|
and is_too_large_sequence
|
|
and not is_multi_byte_decoder
|
|
):
|
|
try:
|
|
sequences[int(50e3) :].decode(encoding_iana, errors="strict")
|
|
except UnicodeDecodeError as e:
|
|
logger.log(
|
|
TRACE,
|
|
"LazyStr Loading: After final lookup, code page %s does not fit given bytes sequence at ALL. %s",
|
|
encoding_iana,
|
|
str(e),
|
|
)
|
|
tested_but_hard_failure.append(encoding_iana)
|
|
continue
|
|
|
|
mean_mess_ratio: float = sum(md_ratios) / len(md_ratios) if md_ratios else 0.0
|
|
if mean_mess_ratio >= threshold or early_stop_count >= max_chunk_gave_up:
|
|
tested_but_soft_failure.append(encoding_iana)
|
|
logger.log(
|
|
TRACE,
|
|
"%s was excluded because of initial chaos probing. Gave up %i time(s). "
|
|
"Computed mean chaos is %f %%.",
|
|
encoding_iana,
|
|
early_stop_count,
|
|
round(mean_mess_ratio * 100, ndigits=3),
|
|
)
|
|
# Preparing those fallbacks in case we got nothing.
|
|
if (
|
|
encoding_iana in ["ascii", "utf_8", specified_encoding]
|
|
and not lazy_str_hard_failure
|
|
):
|
|
fallback_entry = CharsetMatch(
|
|
sequences, encoding_iana, threshold, False, [], decoded_payload
|
|
)
|
|
if encoding_iana == specified_encoding:
|
|
fallback_specified = fallback_entry
|
|
elif encoding_iana == "ascii":
|
|
fallback_ascii = fallback_entry
|
|
else:
|
|
fallback_u8 = fallback_entry
|
|
continue
|
|
|
|
logger.log(
|
|
TRACE,
|
|
"%s passed initial chaos probing. Mean measured chaos is %f %%",
|
|
encoding_iana,
|
|
round(mean_mess_ratio * 100, ndigits=3),
|
|
)
|
|
|
|
if not is_multi_byte_decoder:
|
|
target_languages: List[str] = encoding_languages(encoding_iana)
|
|
else:
|
|
target_languages = mb_encoding_languages(encoding_iana)
|
|
|
|
if target_languages:
|
|
logger.log(
|
|
TRACE,
|
|
"{} should target any language(s) of {}".format(
|
|
encoding_iana, str(target_languages)
|
|
),
|
|
)
|
|
|
|
cd_ratios = []
|
|
|
|
# We shall skip the CD when its about ASCII
|
|
# Most of the time its not relevant to run "language-detection" on it.
|
|
if encoding_iana != "ascii":
|
|
for chunk in md_chunks:
|
|
chunk_languages = coherence_ratio(
|
|
chunk, 0.1, ",".join(target_languages) if target_languages else None
|
|
)
|
|
|
|
cd_ratios.append(chunk_languages)
|
|
|
|
cd_ratios_merged = merge_coherence_ratios(cd_ratios)
|
|
|
|
if cd_ratios_merged:
|
|
logger.log(
|
|
TRACE,
|
|
"We detected language {} using {}".format(
|
|
cd_ratios_merged, encoding_iana
|
|
),
|
|
)
|
|
|
|
results.append(
|
|
CharsetMatch(
|
|
sequences,
|
|
encoding_iana,
|
|
mean_mess_ratio,
|
|
bom_or_sig_available,
|
|
cd_ratios_merged,
|
|
decoded_payload,
|
|
)
|
|
)
|
|
|
|
if (
|
|
encoding_iana in [specified_encoding, "ascii", "utf_8"]
|
|
and mean_mess_ratio < 0.1
|
|
):
|
|
logger.debug(
|
|
"Encoding detection: %s is most likely the one.", encoding_iana
|
|
)
|
|
if explain:
|
|
logger.removeHandler(explain_handler)
|
|
logger.setLevel(previous_logger_level)
|
|
return CharsetMatches([results[encoding_iana]])
|
|
|
|
if encoding_iana == sig_encoding:
|
|
logger.debug(
|
|
"Encoding detection: %s is most likely the one as we detected a BOM or SIG within "
|
|
"the beginning of the sequence.",
|
|
encoding_iana,
|
|
)
|
|
if explain:
|
|
logger.removeHandler(explain_handler)
|
|
logger.setLevel(previous_logger_level)
|
|
return CharsetMatches([results[encoding_iana]])
|
|
|
|
if len(results) == 0:
|
|
if fallback_u8 or fallback_ascii or fallback_specified:
|
|
logger.log(
|
|
TRACE,
|
|
"Nothing got out of the detection process. Using ASCII/UTF-8/Specified fallback.",
|
|
)
|
|
|
|
if fallback_specified:
|
|
logger.debug(
|
|
"Encoding detection: %s will be used as a fallback match",
|
|
fallback_specified.encoding,
|
|
)
|
|
results.append(fallback_specified)
|
|
elif (
|
|
(fallback_u8 and fallback_ascii is None)
|
|
or (
|
|
fallback_u8
|
|
and fallback_ascii
|
|
and fallback_u8.fingerprint != fallback_ascii.fingerprint
|
|
)
|
|
or (fallback_u8 is not None)
|
|
):
|
|
logger.debug("Encoding detection: utf_8 will be used as a fallback match")
|
|
results.append(fallback_u8)
|
|
elif fallback_ascii:
|
|
logger.debug("Encoding detection: ascii will be used as a fallback match")
|
|
results.append(fallback_ascii)
|
|
|
|
if results:
|
|
logger.debug(
|
|
"Encoding detection: Found %s as plausible (best-candidate) for content. With %i alternatives.",
|
|
results.best().encoding, # type: ignore
|
|
len(results) - 1,
|
|
)
|
|
else:
|
|
logger.debug("Encoding detection: Unable to determine any suitable charset.")
|
|
|
|
if explain:
|
|
logger.removeHandler(explain_handler)
|
|
logger.setLevel(previous_logger_level)
|
|
|
|
return results
|
|
|
|
|
|
def from_fp(
|
|
fp: BinaryIO,
|
|
steps: int = 5,
|
|
chunk_size: int = 512,
|
|
threshold: float = 0.20,
|
|
cp_isolation: Optional[List[str]] = None,
|
|
cp_exclusion: Optional[List[str]] = None,
|
|
preemptive_behaviour: bool = True,
|
|
explain: bool = False,
|
|
) -> CharsetMatches:
|
|
"""
|
|
Same thing than the function from_bytes but using a file pointer that is already ready.
|
|
Will not close the file pointer.
|
|
"""
|
|
return from_bytes(
|
|
fp.read(),
|
|
steps,
|
|
chunk_size,
|
|
threshold,
|
|
cp_isolation,
|
|
cp_exclusion,
|
|
preemptive_behaviour,
|
|
explain,
|
|
)
|
|
|
|
|
|
def from_path(
|
|
path: "PathLike[Any]",
|
|
steps: int = 5,
|
|
chunk_size: int = 512,
|
|
threshold: float = 0.20,
|
|
cp_isolation: Optional[List[str]] = None,
|
|
cp_exclusion: Optional[List[str]] = None,
|
|
preemptive_behaviour: bool = True,
|
|
explain: bool = False,
|
|
) -> CharsetMatches:
|
|
"""
|
|
Same thing than the function from_bytes but with one extra step. Opening and reading given file path in binary mode.
|
|
Can raise IOError.
|
|
"""
|
|
with open(path, "rb") as fp:
|
|
return from_fp(
|
|
fp,
|
|
steps,
|
|
chunk_size,
|
|
threshold,
|
|
cp_isolation,
|
|
cp_exclusion,
|
|
preemptive_behaviour,
|
|
explain,
|
|
)
|
|
|
|
|
|
def normalize(
|
|
path: "PathLike[Any]",
|
|
steps: int = 5,
|
|
chunk_size: int = 512,
|
|
threshold: float = 0.20,
|
|
cp_isolation: Optional[List[str]] = None,
|
|
cp_exclusion: Optional[List[str]] = None,
|
|
preemptive_behaviour: bool = True,
|
|
) -> CharsetMatch:
|
|
"""
|
|
Take a (text-based) file path and try to create another file next to it, this time using UTF-8.
|
|
"""
|
|
warnings.warn(
|
|
"normalize is deprecated and will be removed in 3.0",
|
|
DeprecationWarning,
|
|
)
|
|
|
|
results = from_path(
|
|
path,
|
|
steps,
|
|
chunk_size,
|
|
threshold,
|
|
cp_isolation,
|
|
cp_exclusion,
|
|
preemptive_behaviour,
|
|
)
|
|
|
|
filename = basename(path)
|
|
target_extensions = list(splitext(filename))
|
|
|
|
if len(results) == 0:
|
|
raise IOError(
|
|
'Unable to normalize "{}", no encoding charset seems to fit.'.format(
|
|
filename
|
|
)
|
|
)
|
|
|
|
result = results.best()
|
|
|
|
target_extensions[0] += "-" + result.encoding # type: ignore
|
|
|
|
with open(
|
|
"{}".format(str(path).replace(filename, "".join(target_extensions))), "wb"
|
|
) as fp:
|
|
fp.write(result.output()) # type: ignore
|
|
|
|
return result # type: ignore
|