wg-backend-django/dell-env/lib/python3.11/site-packages/dash/_grouping.py
2023-10-30 14:40:43 +07:00

239 lines
8.0 KiB
Python

"""
This module contains a collection of utility function for dealing with property
groupings.
Terminology:
For the purpose of grouping and ungrouping, tuples/lists and dictionaries are considered
"composite values" and all other values are considered "scalar values".
A "grouping value" is either composite or scalar.
A "schema" is a grouping value that can be used to encode an expected grouping
structure
"""
from dash.exceptions import InvalidCallbackReturnValue
from ._utils import AttributeDict, stringify_id
def flatten_grouping(grouping, schema=None):
"""
Convert a grouping value to a list of scalar values
:param grouping: grouping value to flatten
:param schema: If provided, a grouping value representing the expected structure of
the input grouping value. If not provided, the grouping value is its own schema.
A schema is required in order to be able treat tuples and dicts in the input
grouping as scalar values.
:return: list of the scalar values in the input grouping
"""
if schema is None:
schema = grouping
else:
validate_grouping(grouping, schema)
if isinstance(schema, (tuple, list)):
return [
g
for group_el, schema_el in zip(grouping, schema)
for g in flatten_grouping(group_el, schema_el)
]
if isinstance(schema, dict):
return [g for k in schema for g in flatten_grouping(grouping[k], schema[k])]
return [grouping]
def grouping_len(grouping):
"""
Get the length of a grouping. The length equal to the number of scalar values
contained in the grouping, which is equivalent to the length of the list that would
result from calling flatten_grouping on the grouping value.
:param grouping: The grouping value to calculate the length of
:return: non-negative integer
"""
if isinstance(grouping, (tuple, list)):
return sum([grouping_len(group_el) for group_el in grouping])
if isinstance(grouping, dict):
return sum([grouping_len(group_el) for group_el in grouping.values()])
return 1
def make_grouping_by_index(schema, flat_values):
"""
Make a grouping like the provided grouping schema, with scalar values drawn from a
flat list by index.
Note: Scalar values in schema are not used
:param schema: Grouping value encoding the structure of the grouping to return
:param flat_values: List of values with length matching the grouping_len of schema.
Elements of flat_values will become the scalar values in the resulting grouping
"""
def _perform_make_grouping_like(value, next_values):
if isinstance(value, (tuple, list)):
return list(
_perform_make_grouping_like(el, next_values)
for i, el in enumerate(value)
)
if isinstance(value, dict):
return {
k: _perform_make_grouping_like(v, next_values)
for i, (k, v) in enumerate(value.items())
}
return next_values.pop(0)
if not isinstance(flat_values, list):
raise ValueError(
"The flat_values argument must be a list. "
f"Received value of type {type(flat_values)}"
)
expected_length = len(flatten_grouping(schema))
if len(flat_values) != expected_length:
raise ValueError(
f"The specified grouping pattern requires {expected_length} "
f"elements but received {len(flat_values)}\n"
f" Grouping pattern: {repr(schema)}\n"
f" Values: {flat_values}"
)
return _perform_make_grouping_like(schema, list(flat_values))
def map_grouping(fn, grouping):
"""
Map a function over all of the scalar values of a grouping, maintaining the
grouping structure
:param fn: Single-argument function that accepts and returns scalar grouping values
:param grouping: The grouping to map the function over
:return: A new grouping with the same structure as input grouping with scalar
values updated by the input function.
"""
if isinstance(grouping, (tuple, list)):
return [map_grouping(fn, g) for g in grouping]
if isinstance(grouping, dict):
return AttributeDict({k: map_grouping(fn, g) for k, g in grouping.items()})
return fn(grouping)
def make_grouping_by_key(schema, source, default=None):
"""
Create a grouping from a schema by using the schema's scalar values to look up
items in the provided source object.
:param schema: A grouping of potential keys in source
:param source: Dict-like object to use to look up scalar grouping value using
scalar grouping values as keys
:param default: Default scalar value to use if grouping scalar key is not present
in source
:return: grouping
"""
return map_grouping(lambda s: source.get(s, default), schema)
class SchemaTypeValidationError(InvalidCallbackReturnValue):
def __init__(self, value, full_schema, path, expected_type):
super().__init__(
msg=f"""
Schema: {full_schema}
Path: {repr(path)}
Expected type: {expected_type}
Received value of type {type(value)}:
{repr(value)}
"""
)
@classmethod
def check(cls, value, full_schema, path, expected_type):
if not isinstance(value, expected_type):
raise SchemaTypeValidationError(value, full_schema, path, expected_type)
class SchemaLengthValidationError(InvalidCallbackReturnValue):
def __init__(self, value, full_schema, path, expected_len):
super().__init__(
msg=f"""
Schema: {full_schema}
Path: {repr(path)}
Expected length: {expected_len}
Received value of length {len(value)}:
{repr(value)}
"""
)
@classmethod
def check(cls, value, full_schema, path, expected_len):
if len(value) != expected_len:
raise SchemaLengthValidationError(value, full_schema, path, expected_len)
class SchemaKeysValidationError(InvalidCallbackReturnValue):
def __init__(self, value, full_schema, path, expected_keys):
super().__init__(
msg=f"""
Schema: {full_schema}
Path: {repr(path)}
Expected keys: {expected_keys}
Received value with keys {set(value.keys())}:
{repr(value)}
"""
)
@classmethod
def check(cls, value, full_schema, path, expected_keys):
if set(value.keys()) != set(expected_keys):
raise SchemaKeysValidationError(value, full_schema, path, expected_keys)
def validate_grouping(grouping, schema, full_schema=None, path=()):
"""
Validate that the provided grouping conforms to the provided schema.
If not, raise a SchemaValidationError
"""
if full_schema is None:
full_schema = schema
if isinstance(schema, (tuple, list)):
SchemaTypeValidationError.check(grouping, full_schema, path, (tuple, list))
SchemaLengthValidationError.check(grouping, full_schema, path, len(schema))
for i, (g, s) in enumerate(zip(grouping, schema)):
validate_grouping(g, s, full_schema=full_schema, path=path + (i,))
elif isinstance(schema, dict):
SchemaTypeValidationError.check(grouping, full_schema, path, dict)
SchemaKeysValidationError.check(grouping, full_schema, path, set(schema))
for k in schema:
validate_grouping(
grouping[k], schema[k], full_schema=full_schema, path=path + (k,)
)
else:
pass
def update_args_group(g, triggered):
if isinstance(g, dict):
str_id = stringify_id(g["id"])
prop_id = f"{str_id}.{g['property']}"
new_values = {
"value": g.get("value"),
"str_id": str_id,
"triggered": prop_id in triggered,
"id": AttributeDict(g["id"]) if isinstance(g["id"], dict) else g["id"],
}
g.update(new_values)