wg-backend-django/dell-env/lib/python3.11/site-packages/plotly/graph_objs/_histogram.py
2023-10-30 14:40:43 +07:00

3224 lines
117 KiB
Python

from plotly.basedatatypes import BaseTraceType as _BaseTraceType
import copy as _copy
class Histogram(_BaseTraceType):
# class properties
# --------------------
_parent_path_str = ""
_path_str = "histogram"
_valid_props = {
"alignmentgroup",
"autobinx",
"autobiny",
"bingroup",
"cliponaxis",
"constraintext",
"cumulative",
"customdata",
"customdatasrc",
"error_x",
"error_y",
"histfunc",
"histnorm",
"hoverinfo",
"hoverinfosrc",
"hoverlabel",
"hovertemplate",
"hovertemplatesrc",
"hovertext",
"hovertextsrc",
"ids",
"idssrc",
"insidetextanchor",
"insidetextfont",
"legend",
"legendgroup",
"legendgrouptitle",
"legendrank",
"legendwidth",
"marker",
"meta",
"metasrc",
"name",
"nbinsx",
"nbinsy",
"offsetgroup",
"opacity",
"orientation",
"outsidetextfont",
"selected",
"selectedpoints",
"showlegend",
"stream",
"text",
"textangle",
"textfont",
"textposition",
"textsrc",
"texttemplate",
"type",
"uid",
"uirevision",
"unselected",
"visible",
"x",
"xaxis",
"xbins",
"xcalendar",
"xhoverformat",
"xsrc",
"y",
"yaxis",
"ybins",
"ycalendar",
"yhoverformat",
"ysrc",
}
# alignmentgroup
# --------------
@property
def alignmentgroup(self):
"""
Set several traces linked to the same position axis or matching
axes to the same alignmentgroup. This controls whether bars
compute their positional range dependently or independently.
The 'alignmentgroup' property is a string and must be specified as:
- A string
- A number that will be converted to a string
Returns
-------
str
"""
return self["alignmentgroup"]
@alignmentgroup.setter
def alignmentgroup(self, val):
self["alignmentgroup"] = val
# autobinx
# --------
@property
def autobinx(self):
"""
Obsolete: since v1.42 each bin attribute is auto-determined
separately and `autobinx` is not needed. However, we accept
`autobinx: true` or `false` and will update `xbins` accordingly
before deleting `autobinx` from the trace.
The 'autobinx' property must be specified as a bool
(either True, or False)
Returns
-------
bool
"""
return self["autobinx"]
@autobinx.setter
def autobinx(self, val):
self["autobinx"] = val
# autobiny
# --------
@property
def autobiny(self):
"""
Obsolete: since v1.42 each bin attribute is auto-determined
separately and `autobiny` is not needed. However, we accept
`autobiny: true` or `false` and will update `ybins` accordingly
before deleting `autobiny` from the trace.
The 'autobiny' property must be specified as a bool
(either True, or False)
Returns
-------
bool
"""
return self["autobiny"]
@autobiny.setter
def autobiny(self, val):
self["autobiny"] = val
# bingroup
# --------
@property
def bingroup(self):
"""
Set a group of histogram traces which will have compatible bin
settings. Note that traces on the same subplot and with the
same "orientation" under `barmode` "stack", "relative" and
"group" are forced into the same bingroup, Using `bingroup`,
traces under `barmode` "overlay" and on different axes (of the
same axis type) can have compatible bin settings. Note that
histogram and histogram2d* trace can share the same `bingroup`
The 'bingroup' property is a string and must be specified as:
- A string
- A number that will be converted to a string
Returns
-------
str
"""
return self["bingroup"]
@bingroup.setter
def bingroup(self, val):
self["bingroup"] = val
# cliponaxis
# ----------
@property
def cliponaxis(self):
"""
Determines whether the text nodes are clipped about the subplot
axes. To show the text nodes above axis lines and tick labels,
make sure to set `xaxis.layer` and `yaxis.layer` to *below
traces*.
The 'cliponaxis' property must be specified as a bool
(either True, or False)
Returns
-------
bool
"""
return self["cliponaxis"]
@cliponaxis.setter
def cliponaxis(self, val):
self["cliponaxis"] = val
# constraintext
# -------------
@property
def constraintext(self):
"""
Constrain the size of text inside or outside a bar to be no
larger than the bar itself.
The 'constraintext' property is an enumeration that may be specified as:
- One of the following enumeration values:
['inside', 'outside', 'both', 'none']
Returns
-------
Any
"""
return self["constraintext"]
@constraintext.setter
def constraintext(self, val):
self["constraintext"] = val
# cumulative
# ----------
@property
def cumulative(self):
"""
The 'cumulative' property is an instance of Cumulative
that may be specified as:
- An instance of :class:`plotly.graph_objs.histogram.Cumulative`
- A dict of string/value properties that will be passed
to the Cumulative constructor
Supported dict properties:
currentbin
Only applies if cumulative is enabled. Sets
whether the current bin is included, excluded,
or has half of its value included in the
current cumulative value. "include" is the
default for compatibility with various other
tools, however it introduces a half-bin bias to
the results. "exclude" makes the opposite half-
bin bias, and "half" removes it.
direction
Only applies if cumulative is enabled. If
"increasing" (default) we sum all prior bins,
so the result increases from left to right. If
"decreasing" we sum later bins so the result
decreases from left to right.
enabled
If true, display the cumulative distribution by
summing the binned values. Use the `direction`
and `centralbin` attributes to tune the
accumulation method. Note: in this mode, the
"density" `histnorm` settings behave the same
as their equivalents without "density": "" and
"density" both rise to the number of data
points, and "probability" and *probability
density* both rise to the number of sample
points.
Returns
-------
plotly.graph_objs.histogram.Cumulative
"""
return self["cumulative"]
@cumulative.setter
def cumulative(self, val):
self["cumulative"] = val
# customdata
# ----------
@property
def customdata(self):
"""
Assigns extra data each datum. This may be useful when
listening to hover, click and selection events. Note that,
"scatter" traces also appends customdata items in the markers
DOM elements
The 'customdata' property is an array that may be specified as a tuple,
list, numpy array, or pandas Series
Returns
-------
numpy.ndarray
"""
return self["customdata"]
@customdata.setter
def customdata(self, val):
self["customdata"] = val
# customdatasrc
# -------------
@property
def customdatasrc(self):
"""
Sets the source reference on Chart Studio Cloud for
`customdata`.
The 'customdatasrc' property must be specified as a string or
as a plotly.grid_objs.Column object
Returns
-------
str
"""
return self["customdatasrc"]
@customdatasrc.setter
def customdatasrc(self, val):
self["customdatasrc"] = val
# error_x
# -------
@property
def error_x(self):
"""
The 'error_x' property is an instance of ErrorX
that may be specified as:
- An instance of :class:`plotly.graph_objs.histogram.ErrorX`
- A dict of string/value properties that will be passed
to the ErrorX constructor
Supported dict properties:
array
Sets the data corresponding the length of each
error bar. Values are plotted relative to the
underlying data.
arrayminus
Sets the data corresponding the length of each
error bar in the bottom (left) direction for
vertical (horizontal) bars Values are plotted
relative to the underlying data.
arrayminussrc
Sets the source reference on Chart Studio Cloud
for `arrayminus`.
arraysrc
Sets the source reference on Chart Studio Cloud
for `array`.
color
Sets the stoke color of the error bars.
copy_ystyle
symmetric
Determines whether or not the error bars have
the same length in both direction (top/bottom
for vertical bars, left/right for horizontal
bars.
thickness
Sets the thickness (in px) of the error bars.
traceref
tracerefminus
type
Determines the rule used to generate the error
bars. If *constant`, the bar lengths are of a
constant value. Set this constant in `value`.
If "percent", the bar lengths correspond to a
percentage of underlying data. Set this
percentage in `value`. If "sqrt", the bar
lengths correspond to the square of the
underlying data. If "data", the bar lengths are
set with data set `array`.
value
Sets the value of either the percentage (if
`type` is set to "percent") or the constant (if
`type` is set to "constant") corresponding to
the lengths of the error bars.
valueminus
Sets the value of either the percentage (if
`type` is set to "percent") or the constant (if
`type` is set to "constant") corresponding to
the lengths of the error bars in the bottom
(left) direction for vertical (horizontal) bars
visible
Determines whether or not this set of error
bars is visible.
width
Sets the width (in px) of the cross-bar at both
ends of the error bars.
Returns
-------
plotly.graph_objs.histogram.ErrorX
"""
return self["error_x"]
@error_x.setter
def error_x(self, val):
self["error_x"] = val
# error_y
# -------
@property
def error_y(self):
"""
The 'error_y' property is an instance of ErrorY
that may be specified as:
- An instance of :class:`plotly.graph_objs.histogram.ErrorY`
- A dict of string/value properties that will be passed
to the ErrorY constructor
Supported dict properties:
array
Sets the data corresponding the length of each
error bar. Values are plotted relative to the
underlying data.
arrayminus
Sets the data corresponding the length of each
error bar in the bottom (left) direction for
vertical (horizontal) bars Values are plotted
relative to the underlying data.
arrayminussrc
Sets the source reference on Chart Studio Cloud
for `arrayminus`.
arraysrc
Sets the source reference on Chart Studio Cloud
for `array`.
color
Sets the stoke color of the error bars.
symmetric
Determines whether or not the error bars have
the same length in both direction (top/bottom
for vertical bars, left/right for horizontal
bars.
thickness
Sets the thickness (in px) of the error bars.
traceref
tracerefminus
type
Determines the rule used to generate the error
bars. If *constant`, the bar lengths are of a
constant value. Set this constant in `value`.
If "percent", the bar lengths correspond to a
percentage of underlying data. Set this
percentage in `value`. If "sqrt", the bar
lengths correspond to the square of the
underlying data. If "data", the bar lengths are
set with data set `array`.
value
Sets the value of either the percentage (if
`type` is set to "percent") or the constant (if
`type` is set to "constant") corresponding to
the lengths of the error bars.
valueminus
Sets the value of either the percentage (if
`type` is set to "percent") or the constant (if
`type` is set to "constant") corresponding to
the lengths of the error bars in the bottom
(left) direction for vertical (horizontal) bars
visible
Determines whether or not this set of error
bars is visible.
width
Sets the width (in px) of the cross-bar at both
ends of the error bars.
Returns
-------
plotly.graph_objs.histogram.ErrorY
"""
return self["error_y"]
@error_y.setter
def error_y(self, val):
self["error_y"] = val
# histfunc
# --------
@property
def histfunc(self):
"""
Specifies the binning function used for this histogram trace.
If "count", the histogram values are computed by counting the
number of values lying inside each bin. If "sum", "avg", "min",
"max", the histogram values are computed using the sum, the
average, the minimum or the maximum of the values lying inside
each bin respectively.
The 'histfunc' property is an enumeration that may be specified as:
- One of the following enumeration values:
['count', 'sum', 'avg', 'min', 'max']
Returns
-------
Any
"""
return self["histfunc"]
@histfunc.setter
def histfunc(self, val):
self["histfunc"] = val
# histnorm
# --------
@property
def histnorm(self):
"""
Specifies the type of normalization used for this histogram
trace. If "", the span of each bar corresponds to the number of
occurrences (i.e. the number of data points lying inside the
bins). If "percent" / "probability", the span of each bar
corresponds to the percentage / fraction of occurrences with
respect to the total number of sample points (here, the sum of
all bin HEIGHTS equals 100% / 1). If "density", the span of
each bar corresponds to the number of occurrences in a bin
divided by the size of the bin interval (here, the sum of all
bin AREAS equals the total number of sample points). If
*probability density*, the area of each bar corresponds to the
probability that an event will fall into the corresponding bin
(here, the sum of all bin AREAS equals 1).
The 'histnorm' property is an enumeration that may be specified as:
- One of the following enumeration values:
['', 'percent', 'probability', 'density', 'probability
density']
Returns
-------
Any
"""
return self["histnorm"]
@histnorm.setter
def histnorm(self, val):
self["histnorm"] = val
# hoverinfo
# ---------
@property
def hoverinfo(self):
"""
Determines which trace information appear on hover. If `none`
or `skip` are set, no information is displayed upon hovering.
But, if `none` is set, click and hover events are still fired.
The 'hoverinfo' property is a flaglist and may be specified
as a string containing:
- Any combination of ['x', 'y', 'z', 'text', 'name'] joined with '+' characters
(e.g. 'x+y')
OR exactly one of ['all', 'none', 'skip'] (e.g. 'skip')
- A list or array of the above
Returns
-------
Any|numpy.ndarray
"""
return self["hoverinfo"]
@hoverinfo.setter
def hoverinfo(self, val):
self["hoverinfo"] = val
# hoverinfosrc
# ------------
@property
def hoverinfosrc(self):
"""
Sets the source reference on Chart Studio Cloud for
`hoverinfo`.
The 'hoverinfosrc' property must be specified as a string or
as a plotly.grid_objs.Column object
Returns
-------
str
"""
return self["hoverinfosrc"]
@hoverinfosrc.setter
def hoverinfosrc(self, val):
self["hoverinfosrc"] = val
# hoverlabel
# ----------
@property
def hoverlabel(self):
"""
The 'hoverlabel' property is an instance of Hoverlabel
that may be specified as:
- An instance of :class:`plotly.graph_objs.histogram.Hoverlabel`
- A dict of string/value properties that will be passed
to the Hoverlabel constructor
Supported dict properties:
align
Sets the horizontal alignment of the text
content within hover label box. Has an effect
only if the hover label text spans more two or
more lines
alignsrc
Sets the source reference on Chart Studio Cloud
for `align`.
bgcolor
Sets the background color of the hover labels
for this trace
bgcolorsrc
Sets the source reference on Chart Studio Cloud
for `bgcolor`.
bordercolor
Sets the border color of the hover labels for
this trace.
bordercolorsrc
Sets the source reference on Chart Studio Cloud
for `bordercolor`.
font
Sets the font used in hover labels.
namelength
Sets the default length (in number of
characters) of the trace name in the hover
labels for all traces. -1 shows the whole name
regardless of length. 0-3 shows the first 0-3
characters, and an integer >3 will show the
whole name if it is less than that many
characters, but if it is longer, will truncate
to `namelength - 3` characters and add an
ellipsis.
namelengthsrc
Sets the source reference on Chart Studio Cloud
for `namelength`.
Returns
-------
plotly.graph_objs.histogram.Hoverlabel
"""
return self["hoverlabel"]
@hoverlabel.setter
def hoverlabel(self, val):
self["hoverlabel"] = val
# hovertemplate
# -------------
@property
def hovertemplate(self):
"""
Template string used for rendering the information that appear
on hover box. Note that this will override `hoverinfo`.
Variables are inserted using %{variable}, for example "y: %{y}"
as well as %{xother}, {%_xother}, {%_xother_}, {%xother_}. When
showing info for several points, "xother" will be added to
those with different x positions from the first point. An
underscore before or after "(x|y)other" will add a space on
that side, only when this field is shown. Numbers are formatted
using d3-format's syntax %{variable:d3-format}, for example
"Price: %{y:$.2f}".
https://github.com/d3/d3-format/tree/v1.4.5#d3-format for
details on the formatting syntax. Dates are formatted using
d3-time-format's syntax %{variable|d3-time-format}, for example
"Day: %{2019-01-01|%A}". https://github.com/d3/d3-time-
format/tree/v2.2.3#locale_format for details on the date
formatting syntax. The variables available in `hovertemplate`
are the ones emitted as event data described at this link
https://plotly.com/javascript/plotlyjs-events/#event-data.
Additionally, every attributes that can be specified per-point
(the ones that are `arrayOk: true`) are available. Finally, the
template string has access to variable `binNumber` Anything
contained in tag `<extra>` is displayed in the secondary box,
for example "<extra>{fullData.name}</extra>". To hide the
secondary box completely, use an empty tag `<extra></extra>`.
The 'hovertemplate' property is a string and must be specified as:
- A string
- A number that will be converted to a string
- A tuple, list, or one-dimensional numpy array of the above
Returns
-------
str|numpy.ndarray
"""
return self["hovertemplate"]
@hovertemplate.setter
def hovertemplate(self, val):
self["hovertemplate"] = val
# hovertemplatesrc
# ----------------
@property
def hovertemplatesrc(self):
"""
Sets the source reference on Chart Studio Cloud for
`hovertemplate`.
The 'hovertemplatesrc' property must be specified as a string or
as a plotly.grid_objs.Column object
Returns
-------
str
"""
return self["hovertemplatesrc"]
@hovertemplatesrc.setter
def hovertemplatesrc(self, val):
self["hovertemplatesrc"] = val
# hovertext
# ---------
@property
def hovertext(self):
"""
Same as `text`.
The 'hovertext' property is a string and must be specified as:
- A string
- A number that will be converted to a string
- A tuple, list, or one-dimensional numpy array of the above
Returns
-------
str|numpy.ndarray
"""
return self["hovertext"]
@hovertext.setter
def hovertext(self, val):
self["hovertext"] = val
# hovertextsrc
# ------------
@property
def hovertextsrc(self):
"""
Sets the source reference on Chart Studio Cloud for
`hovertext`.
The 'hovertextsrc' property must be specified as a string or
as a plotly.grid_objs.Column object
Returns
-------
str
"""
return self["hovertextsrc"]
@hovertextsrc.setter
def hovertextsrc(self, val):
self["hovertextsrc"] = val
# ids
# ---
@property
def ids(self):
"""
Assigns id labels to each datum. These ids for object constancy
of data points during animation. Should be an array of strings,
not numbers or any other type.
The 'ids' property is an array that may be specified as a tuple,
list, numpy array, or pandas Series
Returns
-------
numpy.ndarray
"""
return self["ids"]
@ids.setter
def ids(self, val):
self["ids"] = val
# idssrc
# ------
@property
def idssrc(self):
"""
Sets the source reference on Chart Studio Cloud for `ids`.
The 'idssrc' property must be specified as a string or
as a plotly.grid_objs.Column object
Returns
-------
str
"""
return self["idssrc"]
@idssrc.setter
def idssrc(self, val):
self["idssrc"] = val
# insidetextanchor
# ----------------
@property
def insidetextanchor(self):
"""
Determines if texts are kept at center or start/end points in
`textposition` "inside" mode.
The 'insidetextanchor' property is an enumeration that may be specified as:
- One of the following enumeration values:
['end', 'middle', 'start']
Returns
-------
Any
"""
return self["insidetextanchor"]
@insidetextanchor.setter
def insidetextanchor(self, val):
self["insidetextanchor"] = val
# insidetextfont
# --------------
@property
def insidetextfont(self):
"""
Sets the font used for `text` lying inside the bar.
The 'insidetextfont' property is an instance of Insidetextfont
that may be specified as:
- An instance of :class:`plotly.graph_objs.histogram.Insidetextfont`
- A dict of string/value properties that will be passed
to the Insidetextfont constructor
Supported dict properties:
color
family
HTML font family - the typeface that will be
applied by the web browser. The web browser
will only be able to apply a font if it is
available on the system which it operates.
Provide multiple font families, separated by
commas, to indicate the preference in which to
apply fonts if they aren't available on the
system. The Chart Studio Cloud (at
https://chart-studio.plotly.com or on-premise)
generates images on a server, where only a
select number of fonts are installed and
supported. These include "Arial", "Balto",
"Courier New", "Droid Sans",, "Droid Serif",
"Droid Sans Mono", "Gravitas One", "Old
Standard TT", "Open Sans", "Overpass", "PT Sans
Narrow", "Raleway", "Times New Roman".
size
Returns
-------
plotly.graph_objs.histogram.Insidetextfont
"""
return self["insidetextfont"]
@insidetextfont.setter
def insidetextfont(self, val):
self["insidetextfont"] = val
# legend
# ------
@property
def legend(self):
"""
Sets the reference to a legend to show this trace in.
References to these legends are "legend", "legend2", "legend3",
etc. Settings for these legends are set in the layout, under
`layout.legend`, `layout.legend2`, etc.
The 'legend' property is an identifier of a particular
subplot, of type 'legend', that may be specified as the string 'legend'
optionally followed by an integer >= 1
(e.g. 'legend', 'legend1', 'legend2', 'legend3', etc.)
Returns
-------
str
"""
return self["legend"]
@legend.setter
def legend(self, val):
self["legend"] = val
# legendgroup
# -----------
@property
def legendgroup(self):
"""
Sets the legend group for this trace. Traces and shapes part of
the same legend group hide/show at the same time when toggling
legend items.
The 'legendgroup' property is a string and must be specified as:
- A string
- A number that will be converted to a string
Returns
-------
str
"""
return self["legendgroup"]
@legendgroup.setter
def legendgroup(self, val):
self["legendgroup"] = val
# legendgrouptitle
# ----------------
@property
def legendgrouptitle(self):
"""
The 'legendgrouptitle' property is an instance of Legendgrouptitle
that may be specified as:
- An instance of :class:`plotly.graph_objs.histogram.Legendgrouptitle`
- A dict of string/value properties that will be passed
to the Legendgrouptitle constructor
Supported dict properties:
font
Sets this legend group's title font.
text
Sets the title of the legend group.
Returns
-------
plotly.graph_objs.histogram.Legendgrouptitle
"""
return self["legendgrouptitle"]
@legendgrouptitle.setter
def legendgrouptitle(self, val):
self["legendgrouptitle"] = val
# legendrank
# ----------
@property
def legendrank(self):
"""
Sets the legend rank for this trace. Items and groups with
smaller ranks are presented on top/left side while with
"reversed" `legend.traceorder` they are on bottom/right side.
The default legendrank is 1000, so that you can use ranks less
than 1000 to place certain items before all unranked items, and
ranks greater than 1000 to go after all unranked items. When
having unranked or equal rank items shapes would be displayed
after traces i.e. according to their order in data and layout.
The 'legendrank' property is a number and may be specified as:
- An int or float
Returns
-------
int|float
"""
return self["legendrank"]
@legendrank.setter
def legendrank(self, val):
self["legendrank"] = val
# legendwidth
# -----------
@property
def legendwidth(self):
"""
Sets the width (in px or fraction) of the legend for this
trace.
The 'legendwidth' property is a number and may be specified as:
- An int or float in the interval [0, inf]
Returns
-------
int|float
"""
return self["legendwidth"]
@legendwidth.setter
def legendwidth(self, val):
self["legendwidth"] = val
# marker
# ------
@property
def marker(self):
"""
The 'marker' property is an instance of Marker
that may be specified as:
- An instance of :class:`plotly.graph_objs.histogram.Marker`
- A dict of string/value properties that will be passed
to the Marker constructor
Supported dict properties:
autocolorscale
Determines whether the colorscale is a default
palette (`autocolorscale: true`) or the palette
determined by `marker.colorscale`. Has an
effect only if in `marker.color` is set to a
numerical array. In case `colorscale` is
unspecified or `autocolorscale` is true, the
default palette will be chosen according to
whether numbers in the `color` array are all
positive, all negative or mixed.
cauto
Determines whether or not the color domain is
computed with respect to the input data (here
in `marker.color`) or the bounds set in
`marker.cmin` and `marker.cmax` Has an effect
only if in `marker.color` is set to a numerical
array. Defaults to `false` when `marker.cmin`
and `marker.cmax` are set by the user.
cmax
Sets the upper bound of the color domain. Has
an effect only if in `marker.color` is set to a
numerical array. Value should have the same
units as in `marker.color` and if set,
`marker.cmin` must be set as well.
cmid
Sets the mid-point of the color domain by
scaling `marker.cmin` and/or `marker.cmax` to
be equidistant to this point. Has an effect
only if in `marker.color` is set to a numerical
array. Value should have the same units as in
`marker.color`. Has no effect when
`marker.cauto` is `false`.
cmin
Sets the lower bound of the color domain. Has
an effect only if in `marker.color` is set to a
numerical array. Value should have the same
units as in `marker.color` and if set,
`marker.cmax` must be set as well.
color
Sets the marker color. It accepts either a
specific color or an array of numbers that are
mapped to the colorscale relative to the max
and min values of the array or relative to
`marker.cmin` and `marker.cmax` if set.
coloraxis
Sets a reference to a shared color axis.
References to these shared color axes are
"coloraxis", "coloraxis2", "coloraxis3", etc.
Settings for these shared color axes are set in
the layout, under `layout.coloraxis`,
`layout.coloraxis2`, etc. Note that multiple
color scales can be linked to the same color
axis.
colorbar
:class:`plotly.graph_objects.histogram.marker.C
olorBar` instance or dict with compatible
properties
colorscale
Sets the colorscale. Has an effect only if in
`marker.color` is set to a numerical array. The
colorscale must be an array containing arrays
mapping a normalized value to an rgb, rgba,
hex, hsl, hsv, or named color string. At
minimum, a mapping for the lowest (0) and
highest (1) values are required. For example,
`[[0, 'rgb(0,0,255)'], [1, 'rgb(255,0,0)']]`.
To control the bounds of the colorscale in
color space, use `marker.cmin` and
`marker.cmax`. Alternatively, `colorscale` may
be a palette name string of the following list:
Blackbody,Bluered,Blues,Cividis,Earth,Electric,
Greens,Greys,Hot,Jet,Picnic,Portland,Rainbow,Rd
Bu,Reds,Viridis,YlGnBu,YlOrRd.
colorsrc
Sets the source reference on Chart Studio Cloud
for `color`.
line
:class:`plotly.graph_objects.histogram.marker.L
ine` instance or dict with compatible
properties
opacity
Sets the opacity of the bars.
opacitysrc
Sets the source reference on Chart Studio Cloud
for `opacity`.
pattern
Sets the pattern within the marker.
reversescale
Reverses the color mapping if true. Has an
effect only if in `marker.color` is set to a
numerical array. If true, `marker.cmin` will
correspond to the last color in the array and
`marker.cmax` will correspond to the first
color.
showscale
Determines whether or not a colorbar is
displayed for this trace. Has an effect only if
in `marker.color` is set to a numerical array.
Returns
-------
plotly.graph_objs.histogram.Marker
"""
return self["marker"]
@marker.setter
def marker(self, val):
self["marker"] = val
# meta
# ----
@property
def meta(self):
"""
Assigns extra meta information associated with this trace that
can be used in various text attributes. Attributes such as
trace `name`, graph, axis and colorbar `title.text`, annotation
`text` `rangeselector`, `updatemenues` and `sliders` `label`
text all support `meta`. To access the trace `meta` values in
an attribute in the same trace, simply use `%{meta[i]}` where
`i` is the index or key of the `meta` item in question. To
access trace `meta` in layout attributes, use
`%{data[n[.meta[i]}` where `i` is the index or key of the
`meta` and `n` is the trace index.
The 'meta' property accepts values of any type
Returns
-------
Any|numpy.ndarray
"""
return self["meta"]
@meta.setter
def meta(self, val):
self["meta"] = val
# metasrc
# -------
@property
def metasrc(self):
"""
Sets the source reference on Chart Studio Cloud for `meta`.
The 'metasrc' property must be specified as a string or
as a plotly.grid_objs.Column object
Returns
-------
str
"""
return self["metasrc"]
@metasrc.setter
def metasrc(self, val):
self["metasrc"] = val
# name
# ----
@property
def name(self):
"""
Sets the trace name. The trace name appears as the legend item
and on hover.
The 'name' property is a string and must be specified as:
- A string
- A number that will be converted to a string
Returns
-------
str
"""
return self["name"]
@name.setter
def name(self, val):
self["name"] = val
# nbinsx
# ------
@property
def nbinsx(self):
"""
Specifies the maximum number of desired bins. This value will
be used in an algorithm that will decide the optimal bin size
such that the histogram best visualizes the distribution of the
data. Ignored if `xbins.size` is provided.
The 'nbinsx' property is a integer and may be specified as:
- An int (or float that will be cast to an int)
in the interval [0, 9223372036854775807]
Returns
-------
int
"""
return self["nbinsx"]
@nbinsx.setter
def nbinsx(self, val):
self["nbinsx"] = val
# nbinsy
# ------
@property
def nbinsy(self):
"""
Specifies the maximum number of desired bins. This value will
be used in an algorithm that will decide the optimal bin size
such that the histogram best visualizes the distribution of the
data. Ignored if `ybins.size` is provided.
The 'nbinsy' property is a integer and may be specified as:
- An int (or float that will be cast to an int)
in the interval [0, 9223372036854775807]
Returns
-------
int
"""
return self["nbinsy"]
@nbinsy.setter
def nbinsy(self, val):
self["nbinsy"] = val
# offsetgroup
# -----------
@property
def offsetgroup(self):
"""
Set several traces linked to the same position axis or matching
axes to the same offsetgroup where bars of the same position
coordinate will line up.
The 'offsetgroup' property is a string and must be specified as:
- A string
- A number that will be converted to a string
Returns
-------
str
"""
return self["offsetgroup"]
@offsetgroup.setter
def offsetgroup(self, val):
self["offsetgroup"] = val
# opacity
# -------
@property
def opacity(self):
"""
Sets the opacity of the trace.
The 'opacity' property is a number and may be specified as:
- An int or float in the interval [0, 1]
Returns
-------
int|float
"""
return self["opacity"]
@opacity.setter
def opacity(self, val):
self["opacity"] = val
# orientation
# -----------
@property
def orientation(self):
"""
Sets the orientation of the bars. With "v" ("h"), the value of
the each bar spans along the vertical (horizontal).
The 'orientation' property is an enumeration that may be specified as:
- One of the following enumeration values:
['v', 'h']
Returns
-------
Any
"""
return self["orientation"]
@orientation.setter
def orientation(self, val):
self["orientation"] = val
# outsidetextfont
# ---------------
@property
def outsidetextfont(self):
"""
Sets the font used for `text` lying outside the bar.
The 'outsidetextfont' property is an instance of Outsidetextfont
that may be specified as:
- An instance of :class:`plotly.graph_objs.histogram.Outsidetextfont`
- A dict of string/value properties that will be passed
to the Outsidetextfont constructor
Supported dict properties:
color
family
HTML font family - the typeface that will be
applied by the web browser. The web browser
will only be able to apply a font if it is
available on the system which it operates.
Provide multiple font families, separated by
commas, to indicate the preference in which to
apply fonts if they aren't available on the
system. The Chart Studio Cloud (at
https://chart-studio.plotly.com or on-premise)
generates images on a server, where only a
select number of fonts are installed and
supported. These include "Arial", "Balto",
"Courier New", "Droid Sans",, "Droid Serif",
"Droid Sans Mono", "Gravitas One", "Old
Standard TT", "Open Sans", "Overpass", "PT Sans
Narrow", "Raleway", "Times New Roman".
size
Returns
-------
plotly.graph_objs.histogram.Outsidetextfont
"""
return self["outsidetextfont"]
@outsidetextfont.setter
def outsidetextfont(self, val):
self["outsidetextfont"] = val
# selected
# --------
@property
def selected(self):
"""
The 'selected' property is an instance of Selected
that may be specified as:
- An instance of :class:`plotly.graph_objs.histogram.Selected`
- A dict of string/value properties that will be passed
to the Selected constructor
Supported dict properties:
marker
:class:`plotly.graph_objects.histogram.selected
.Marker` instance or dict with compatible
properties
textfont
:class:`plotly.graph_objects.histogram.selected
.Textfont` instance or dict with compatible
properties
Returns
-------
plotly.graph_objs.histogram.Selected
"""
return self["selected"]
@selected.setter
def selected(self, val):
self["selected"] = val
# selectedpoints
# --------------
@property
def selectedpoints(self):
"""
Array containing integer indices of selected points. Has an
effect only for traces that support selections. Note that an
empty array means an empty selection where the `unselected` are
turned on for all points, whereas, any other non-array values
means no selection all where the `selected` and `unselected`
styles have no effect.
The 'selectedpoints' property accepts values of any type
Returns
-------
Any
"""
return self["selectedpoints"]
@selectedpoints.setter
def selectedpoints(self, val):
self["selectedpoints"] = val
# showlegend
# ----------
@property
def showlegend(self):
"""
Determines whether or not an item corresponding to this trace
is shown in the legend.
The 'showlegend' property must be specified as a bool
(either True, or False)
Returns
-------
bool
"""
return self["showlegend"]
@showlegend.setter
def showlegend(self, val):
self["showlegend"] = val
# stream
# ------
@property
def stream(self):
"""
The 'stream' property is an instance of Stream
that may be specified as:
- An instance of :class:`plotly.graph_objs.histogram.Stream`
- A dict of string/value properties that will be passed
to the Stream constructor
Supported dict properties:
maxpoints
Sets the maximum number of points to keep on
the plots from an incoming stream. If
`maxpoints` is set to 50, only the newest 50
points will be displayed on the plot.
token
The stream id number links a data trace on a
plot with a stream. See https://chart-
studio.plotly.com/settings for more details.
Returns
-------
plotly.graph_objs.histogram.Stream
"""
return self["stream"]
@stream.setter
def stream(self, val):
self["stream"] = val
# text
# ----
@property
def text(self):
"""
Sets hover text elements associated with each bar. If a single
string, the same string appears over all bars. If an array of
string, the items are mapped in order to the this trace's
coordinates.
The 'text' property is a string and must be specified as:
- A string
- A number that will be converted to a string
- A tuple, list, or one-dimensional numpy array of the above
Returns
-------
str|numpy.ndarray
"""
return self["text"]
@text.setter
def text(self, val):
self["text"] = val
# textangle
# ---------
@property
def textangle(self):
"""
Sets the angle of the tick labels with respect to the bar. For
example, a `tickangle` of -90 draws the tick labels vertically.
With "auto" the texts may automatically be rotated to fit with
the maximum size in bars.
The 'textangle' property is a angle (in degrees) that may be
specified as a number between -180 and 180.
Numeric values outside this range are converted to the equivalent value
(e.g. 270 is converted to -90).
Returns
-------
int|float
"""
return self["textangle"]
@textangle.setter
def textangle(self, val):
self["textangle"] = val
# textfont
# --------
@property
def textfont(self):
"""
Sets the text font.
The 'textfont' property is an instance of Textfont
that may be specified as:
- An instance of :class:`plotly.graph_objs.histogram.Textfont`
- A dict of string/value properties that will be passed
to the Textfont constructor
Supported dict properties:
color
family
HTML font family - the typeface that will be
applied by the web browser. The web browser
will only be able to apply a font if it is
available on the system which it operates.
Provide multiple font families, separated by
commas, to indicate the preference in which to
apply fonts if they aren't available on the
system. The Chart Studio Cloud (at
https://chart-studio.plotly.com or on-premise)
generates images on a server, where only a
select number of fonts are installed and
supported. These include "Arial", "Balto",
"Courier New", "Droid Sans",, "Droid Serif",
"Droid Sans Mono", "Gravitas One", "Old
Standard TT", "Open Sans", "Overpass", "PT Sans
Narrow", "Raleway", "Times New Roman".
size
Returns
-------
plotly.graph_objs.histogram.Textfont
"""
return self["textfont"]
@textfont.setter
def textfont(self, val):
self["textfont"] = val
# textposition
# ------------
@property
def textposition(self):
"""
Specifies the location of the `text`. "inside" positions `text`
inside, next to the bar end (rotated and scaled if needed).
"outside" positions `text` outside, next to the bar end (scaled
if needed), unless there is another bar stacked on this one,
then the text gets pushed inside. "auto" tries to position
`text` inside the bar, but if the bar is too small and no bar
is stacked on this one the text is moved outside. If "none", no
text appears.
The 'textposition' property is an enumeration that may be specified as:
- One of the following enumeration values:
['inside', 'outside', 'auto', 'none']
Returns
-------
Any
"""
return self["textposition"]
@textposition.setter
def textposition(self, val):
self["textposition"] = val
# textsrc
# -------
@property
def textsrc(self):
"""
Sets the source reference on Chart Studio Cloud for `text`.
The 'textsrc' property must be specified as a string or
as a plotly.grid_objs.Column object
Returns
-------
str
"""
return self["textsrc"]
@textsrc.setter
def textsrc(self, val):
self["textsrc"] = val
# texttemplate
# ------------
@property
def texttemplate(self):
"""
Template string used for rendering the information text that
appear on points. Note that this will override `textinfo`.
Variables are inserted using %{variable}, for example "y:
%{y}". Numbers are formatted using d3-format's syntax
%{variable:d3-format}, for example "Price: %{y:$.2f}".
https://github.com/d3/d3-format/tree/v1.4.5#d3-format for
details on the formatting syntax. Dates are formatted using
d3-time-format's syntax %{variable|d3-time-format}, for example
"Day: %{2019-01-01|%A}". https://github.com/d3/d3-time-
format/tree/v2.2.3#locale_format for details on the date
formatting syntax. Every attributes that can be specified per-
point (the ones that are `arrayOk: true`) are available.
Finally, the template string has access to variables `label`
and `value`.
The 'texttemplate' property is a string and must be specified as:
- A string
- A number that will be converted to a string
Returns
-------
str
"""
return self["texttemplate"]
@texttemplate.setter
def texttemplate(self, val):
self["texttemplate"] = val
# uid
# ---
@property
def uid(self):
"""
Assign an id to this trace, Use this to provide object
constancy between traces during animations and transitions.
The 'uid' property is a string and must be specified as:
- A string
- A number that will be converted to a string
Returns
-------
str
"""
return self["uid"]
@uid.setter
def uid(self, val):
self["uid"] = val
# uirevision
# ----------
@property
def uirevision(self):
"""
Controls persistence of some user-driven changes to the trace:
`constraintrange` in `parcoords` traces, as well as some
`editable: true` modifications such as `name` and
`colorbar.title`. Defaults to `layout.uirevision`. Note that
other user-driven trace attribute changes are controlled by
`layout` attributes: `trace.visible` is controlled by
`layout.legend.uirevision`, `selectedpoints` is controlled by
`layout.selectionrevision`, and `colorbar.(x|y)` (accessible
with `config: {editable: true}`) is controlled by
`layout.editrevision`. Trace changes are tracked by `uid`,
which only falls back on trace index if no `uid` is provided.
So if your app can add/remove traces before the end of the
`data` array, such that the same trace has a different index,
you can still preserve user-driven changes if you give each
trace a `uid` that stays with it as it moves.
The 'uirevision' property accepts values of any type
Returns
-------
Any
"""
return self["uirevision"]
@uirevision.setter
def uirevision(self, val):
self["uirevision"] = val
# unselected
# ----------
@property
def unselected(self):
"""
The 'unselected' property is an instance of Unselected
that may be specified as:
- An instance of :class:`plotly.graph_objs.histogram.Unselected`
- A dict of string/value properties that will be passed
to the Unselected constructor
Supported dict properties:
marker
:class:`plotly.graph_objects.histogram.unselect
ed.Marker` instance or dict with compatible
properties
textfont
:class:`plotly.graph_objects.histogram.unselect
ed.Textfont` instance or dict with compatible
properties
Returns
-------
plotly.graph_objs.histogram.Unselected
"""
return self["unselected"]
@unselected.setter
def unselected(self, val):
self["unselected"] = val
# visible
# -------
@property
def visible(self):
"""
Determines whether or not this trace is visible. If
"legendonly", the trace is not drawn, but can appear as a
legend item (provided that the legend itself is visible).
The 'visible' property is an enumeration that may be specified as:
- One of the following enumeration values:
[True, False, 'legendonly']
Returns
-------
Any
"""
return self["visible"]
@visible.setter
def visible(self, val):
self["visible"] = val
# x
# -
@property
def x(self):
"""
Sets the sample data to be binned on the x axis.
The 'x' property is an array that may be specified as a tuple,
list, numpy array, or pandas Series
Returns
-------
numpy.ndarray
"""
return self["x"]
@x.setter
def x(self, val):
self["x"] = val
# xaxis
# -----
@property
def xaxis(self):
"""
Sets a reference between this trace's x coordinates and a 2D
cartesian x axis. If "x" (the default value), the x coordinates
refer to `layout.xaxis`. If "x2", the x coordinates refer to
`layout.xaxis2`, and so on.
The 'xaxis' property is an identifier of a particular
subplot, of type 'x', that may be specified as the string 'x'
optionally followed by an integer >= 1
(e.g. 'x', 'x1', 'x2', 'x3', etc.)
Returns
-------
str
"""
return self["xaxis"]
@xaxis.setter
def xaxis(self, val):
self["xaxis"] = val
# xbins
# -----
@property
def xbins(self):
"""
The 'xbins' property is an instance of XBins
that may be specified as:
- An instance of :class:`plotly.graph_objs.histogram.XBins`
- A dict of string/value properties that will be passed
to the XBins constructor
Supported dict properties:
end
Sets the end value for the x axis bins. The
last bin may not end exactly at this value, we
increment the bin edge by `size` from `start`
until we reach or exceed `end`. Defaults to the
maximum data value. Like `start`, for dates use
a date string, and for category data `end` is
based on the category serial numbers.
size
Sets the size of each x axis bin. Default
behavior: If `nbinsx` is 0 or omitted, we
choose a nice round bin size such that the
number of bins is about the same as the typical
number of samples in each bin. If `nbinsx` is
provided, we choose a nice round bin size
giving no more than that many bins. For date
data, use milliseconds or "M<n>" for months, as
in `axis.dtick`. For category data, the number
of categories to bin together (always defaults
to 1). If multiple non-overlaying histograms
share a subplot, the first explicit `size` is
used and all others discarded. If no `size` is
provided,the sample data from all traces is
combined to determine `size` as described
above.
start
Sets the starting value for the x axis bins.
Defaults to the minimum data value, shifted
down if necessary to make nice round values and
to remove ambiguous bin edges. For example, if
most of the data is integers we shift the bin
edges 0.5 down, so a `size` of 5 would have a
default `start` of -0.5, so it is clear that
0-4 are in the first bin, 5-9 in the second,
but continuous data gets a start of 0 and bins
[0,5), [5,10) etc. Dates behave similarly, and
`start` should be a date string. For category
data, `start` is based on the category serial
numbers, and defaults to -0.5. If multiple non-
overlaying histograms share a subplot, the
first explicit `start` is used exactly and all
others are shifted down (if necessary) to
differ from that one by an integer number of
bins.
Returns
-------
plotly.graph_objs.histogram.XBins
"""
return self["xbins"]
@xbins.setter
def xbins(self, val):
self["xbins"] = val
# xcalendar
# ---------
@property
def xcalendar(self):
"""
Sets the calendar system to use with `x` date data.
The 'xcalendar' property is an enumeration that may be specified as:
- One of the following enumeration values:
['chinese', 'coptic', 'discworld', 'ethiopian',
'gregorian', 'hebrew', 'islamic', 'jalali', 'julian',
'mayan', 'nanakshahi', 'nepali', 'persian', 'taiwan',
'thai', 'ummalqura']
Returns
-------
Any
"""
return self["xcalendar"]
@xcalendar.setter
def xcalendar(self, val):
self["xcalendar"] = val
# xhoverformat
# ------------
@property
def xhoverformat(self):
"""
Sets the hover text formatting rulefor `x` using d3 formatting
mini-languages which are very similar to those in Python. For
numbers, see:
https://github.com/d3/d3-format/tree/v1.4.5#d3-format. And for
dates see: https://github.com/d3/d3-time-
format/tree/v2.2.3#locale_format. We add two items to d3's date
formatter: "%h" for half of the year as a decimal number as
well as "%{n}f" for fractional seconds with n digits. For
example, *2016-10-13 09:15:23.456* with tickformat
"%H~%M~%S.%2f" would display *09~15~23.46*By default the values
are formatted using `xaxis.hoverformat`.
The 'xhoverformat' property is a string and must be specified as:
- A string
- A number that will be converted to a string
Returns
-------
str
"""
return self["xhoverformat"]
@xhoverformat.setter
def xhoverformat(self, val):
self["xhoverformat"] = val
# xsrc
# ----
@property
def xsrc(self):
"""
Sets the source reference on Chart Studio Cloud for `x`.
The 'xsrc' property must be specified as a string or
as a plotly.grid_objs.Column object
Returns
-------
str
"""
return self["xsrc"]
@xsrc.setter
def xsrc(self, val):
self["xsrc"] = val
# y
# -
@property
def y(self):
"""
Sets the sample data to be binned on the y axis.
The 'y' property is an array that may be specified as a tuple,
list, numpy array, or pandas Series
Returns
-------
numpy.ndarray
"""
return self["y"]
@y.setter
def y(self, val):
self["y"] = val
# yaxis
# -----
@property
def yaxis(self):
"""
Sets a reference between this trace's y coordinates and a 2D
cartesian y axis. If "y" (the default value), the y coordinates
refer to `layout.yaxis`. If "y2", the y coordinates refer to
`layout.yaxis2`, and so on.
The 'yaxis' property is an identifier of a particular
subplot, of type 'y', that may be specified as the string 'y'
optionally followed by an integer >= 1
(e.g. 'y', 'y1', 'y2', 'y3', etc.)
Returns
-------
str
"""
return self["yaxis"]
@yaxis.setter
def yaxis(self, val):
self["yaxis"] = val
# ybins
# -----
@property
def ybins(self):
"""
The 'ybins' property is an instance of YBins
that may be specified as:
- An instance of :class:`plotly.graph_objs.histogram.YBins`
- A dict of string/value properties that will be passed
to the YBins constructor
Supported dict properties:
end
Sets the end value for the y axis bins. The
last bin may not end exactly at this value, we
increment the bin edge by `size` from `start`
until we reach or exceed `end`. Defaults to the
maximum data value. Like `start`, for dates use
a date string, and for category data `end` is
based on the category serial numbers.
size
Sets the size of each y axis bin. Default
behavior: If `nbinsy` is 0 or omitted, we
choose a nice round bin size such that the
number of bins is about the same as the typical
number of samples in each bin. If `nbinsy` is
provided, we choose a nice round bin size
giving no more than that many bins. For date
data, use milliseconds or "M<n>" for months, as
in `axis.dtick`. For category data, the number
of categories to bin together (always defaults
to 1). If multiple non-overlaying histograms
share a subplot, the first explicit `size` is
used and all others discarded. If no `size` is
provided,the sample data from all traces is
combined to determine `size` as described
above.
start
Sets the starting value for the y axis bins.
Defaults to the minimum data value, shifted
down if necessary to make nice round values and
to remove ambiguous bin edges. For example, if
most of the data is integers we shift the bin
edges 0.5 down, so a `size` of 5 would have a
default `start` of -0.5, so it is clear that
0-4 are in the first bin, 5-9 in the second,
but continuous data gets a start of 0 and bins
[0,5), [5,10) etc. Dates behave similarly, and
`start` should be a date string. For category
data, `start` is based on the category serial
numbers, and defaults to -0.5. If multiple non-
overlaying histograms share a subplot, the
first explicit `start` is used exactly and all
others are shifted down (if necessary) to
differ from that one by an integer number of
bins.
Returns
-------
plotly.graph_objs.histogram.YBins
"""
return self["ybins"]
@ybins.setter
def ybins(self, val):
self["ybins"] = val
# ycalendar
# ---------
@property
def ycalendar(self):
"""
Sets the calendar system to use with `y` date data.
The 'ycalendar' property is an enumeration that may be specified as:
- One of the following enumeration values:
['chinese', 'coptic', 'discworld', 'ethiopian',
'gregorian', 'hebrew', 'islamic', 'jalali', 'julian',
'mayan', 'nanakshahi', 'nepali', 'persian', 'taiwan',
'thai', 'ummalqura']
Returns
-------
Any
"""
return self["ycalendar"]
@ycalendar.setter
def ycalendar(self, val):
self["ycalendar"] = val
# yhoverformat
# ------------
@property
def yhoverformat(self):
"""
Sets the hover text formatting rulefor `y` using d3 formatting
mini-languages which are very similar to those in Python. For
numbers, see:
https://github.com/d3/d3-format/tree/v1.4.5#d3-format. And for
dates see: https://github.com/d3/d3-time-
format/tree/v2.2.3#locale_format. We add two items to d3's date
formatter: "%h" for half of the year as a decimal number as
well as "%{n}f" for fractional seconds with n digits. For
example, *2016-10-13 09:15:23.456* with tickformat
"%H~%M~%S.%2f" would display *09~15~23.46*By default the values
are formatted using `yaxis.hoverformat`.
The 'yhoverformat' property is a string and must be specified as:
- A string
- A number that will be converted to a string
Returns
-------
str
"""
return self["yhoverformat"]
@yhoverformat.setter
def yhoverformat(self, val):
self["yhoverformat"] = val
# ysrc
# ----
@property
def ysrc(self):
"""
Sets the source reference on Chart Studio Cloud for `y`.
The 'ysrc' property must be specified as a string or
as a plotly.grid_objs.Column object
Returns
-------
str
"""
return self["ysrc"]
@ysrc.setter
def ysrc(self, val):
self["ysrc"] = val
# type
# ----
@property
def type(self):
return self._props["type"]
# Self properties description
# ---------------------------
@property
def _prop_descriptions(self):
return """\
alignmentgroup
Set several traces linked to the same position axis or
matching axes to the same alignmentgroup. This controls
whether bars compute their positional range dependently
or independently.
autobinx
Obsolete: since v1.42 each bin attribute is auto-
determined separately and `autobinx` is not needed.
However, we accept `autobinx: true` or `false` and will
update `xbins` accordingly before deleting `autobinx`
from the trace.
autobiny
Obsolete: since v1.42 each bin attribute is auto-
determined separately and `autobiny` is not needed.
However, we accept `autobiny: true` or `false` and will
update `ybins` accordingly before deleting `autobiny`
from the trace.
bingroup
Set a group of histogram traces which will have
compatible bin settings. Note that traces on the same
subplot and with the same "orientation" under `barmode`
"stack", "relative" and "group" are forced into the
same bingroup, Using `bingroup`, traces under `barmode`
"overlay" and on different axes (of the same axis type)
can have compatible bin settings. Note that histogram
and histogram2d* trace can share the same `bingroup`
cliponaxis
Determines whether the text nodes are clipped about the
subplot axes. To show the text nodes above axis lines
and tick labels, make sure to set `xaxis.layer` and
`yaxis.layer` to *below traces*.
constraintext
Constrain the size of text inside or outside a bar to
be no larger than the bar itself.
cumulative
:class:`plotly.graph_objects.histogram.Cumulative`
instance or dict with compatible properties
customdata
Assigns extra data each datum. This may be useful when
listening to hover, click and selection events. Note
that, "scatter" traces also appends customdata items in
the markers DOM elements
customdatasrc
Sets the source reference on Chart Studio Cloud for
`customdata`.
error_x
:class:`plotly.graph_objects.histogram.ErrorX` instance
or dict with compatible properties
error_y
:class:`plotly.graph_objects.histogram.ErrorY` instance
or dict with compatible properties
histfunc
Specifies the binning function used for this histogram
trace. If "count", the histogram values are computed by
counting the number of values lying inside each bin. If
"sum", "avg", "min", "max", the histogram values are
computed using the sum, the average, the minimum or the
maximum of the values lying inside each bin
respectively.
histnorm
Specifies the type of normalization used for this
histogram trace. If "", the span of each bar
corresponds to the number of occurrences (i.e. the
number of data points lying inside the bins). If
"percent" / "probability", the span of each bar
corresponds to the percentage / fraction of occurrences
with respect to the total number of sample points
(here, the sum of all bin HEIGHTS equals 100% / 1). If
"density", the span of each bar corresponds to the
number of occurrences in a bin divided by the size of
the bin interval (here, the sum of all bin AREAS equals
the total number of sample points). If *probability
density*, the area of each bar corresponds to the
probability that an event will fall into the
corresponding bin (here, the sum of all bin AREAS
equals 1).
hoverinfo
Determines which trace information appear on hover. If
`none` or `skip` are set, no information is displayed
upon hovering. But, if `none` is set, click and hover
events are still fired.
hoverinfosrc
Sets the source reference on Chart Studio Cloud for
`hoverinfo`.
hoverlabel
:class:`plotly.graph_objects.histogram.Hoverlabel`
instance or dict with compatible properties
hovertemplate
Template string used for rendering the information that
appear on hover box. Note that this will override
`hoverinfo`. Variables are inserted using %{variable},
for example "y: %{y}" as well as %{xother}, {%_xother},
{%_xother_}, {%xother_}. When showing info for several
points, "xother" will be added to those with different
x positions from the first point. An underscore before
or after "(x|y)other" will add a space on that side,
only when this field is shown. Numbers are formatted
using d3-format's syntax %{variable:d3-format}, for
example "Price: %{y:$.2f}".
https://github.com/d3/d3-format/tree/v1.4.5#d3-format
for details on the formatting syntax. Dates are
formatted using d3-time-format's syntax
%{variable|d3-time-format}, for example "Day:
%{2019-01-01|%A}". https://github.com/d3/d3-time-
format/tree/v2.2.3#locale_format for details on the
date formatting syntax. The variables available in
`hovertemplate` are the ones emitted as event data
described at this link
https://plotly.com/javascript/plotlyjs-events/#event-
data. Additionally, every attributes that can be
specified per-point (the ones that are `arrayOk: true`)
are available. Finally, the template string has access
to variable `binNumber` Anything contained in tag
`<extra>` is displayed in the secondary box, for
example "<extra>{fullData.name}</extra>". To hide the
secondary box completely, use an empty tag
`<extra></extra>`.
hovertemplatesrc
Sets the source reference on Chart Studio Cloud for
`hovertemplate`.
hovertext
Same as `text`.
hovertextsrc
Sets the source reference on Chart Studio Cloud for
`hovertext`.
ids
Assigns id labels to each datum. These ids for object
constancy of data points during animation. Should be an
array of strings, not numbers or any other type.
idssrc
Sets the source reference on Chart Studio Cloud for
`ids`.
insidetextanchor
Determines if texts are kept at center or start/end
points in `textposition` "inside" mode.
insidetextfont
Sets the font used for `text` lying inside the bar.
legend
Sets the reference to a legend to show this trace in.
References to these legends are "legend", "legend2",
"legend3", etc. Settings for these legends are set in
the layout, under `layout.legend`, `layout.legend2`,
etc.
legendgroup
Sets the legend group for this trace. Traces and shapes
part of the same legend group hide/show at the same
time when toggling legend items.
legendgrouptitle
:class:`plotly.graph_objects.histogram.Legendgrouptitle
` instance or dict with compatible properties
legendrank
Sets the legend rank for this trace. Items and groups
with smaller ranks are presented on top/left side while
with "reversed" `legend.traceorder` they are on
bottom/right side. The default legendrank is 1000, so
that you can use ranks less than 1000 to place certain
items before all unranked items, and ranks greater than
1000 to go after all unranked items. When having
unranked or equal rank items shapes would be displayed
after traces i.e. according to their order in data and
layout.
legendwidth
Sets the width (in px or fraction) of the legend for
this trace.
marker
:class:`plotly.graph_objects.histogram.Marker` instance
or dict with compatible properties
meta
Assigns extra meta information associated with this
trace that can be used in various text attributes.
Attributes such as trace `name`, graph, axis and
colorbar `title.text`, annotation `text`
`rangeselector`, `updatemenues` and `sliders` `label`
text all support `meta`. To access the trace `meta`
values in an attribute in the same trace, simply use
`%{meta[i]}` where `i` is the index or key of the
`meta` item in question. To access trace `meta` in
layout attributes, use `%{data[n[.meta[i]}` where `i`
is the index or key of the `meta` and `n` is the trace
index.
metasrc
Sets the source reference on Chart Studio Cloud for
`meta`.
name
Sets the trace name. The trace name appears as the
legend item and on hover.
nbinsx
Specifies the maximum number of desired bins. This
value will be used in an algorithm that will decide the
optimal bin size such that the histogram best
visualizes the distribution of the data. Ignored if
`xbins.size` is provided.
nbinsy
Specifies the maximum number of desired bins. This
value will be used in an algorithm that will decide the
optimal bin size such that the histogram best
visualizes the distribution of the data. Ignored if
`ybins.size` is provided.
offsetgroup
Set several traces linked to the same position axis or
matching axes to the same offsetgroup where bars of the
same position coordinate will line up.
opacity
Sets the opacity of the trace.
orientation
Sets the orientation of the bars. With "v" ("h"), the
value of the each bar spans along the vertical
(horizontal).
outsidetextfont
Sets the font used for `text` lying outside the bar.
selected
:class:`plotly.graph_objects.histogram.Selected`
instance or dict with compatible properties
selectedpoints
Array containing integer indices of selected points.
Has an effect only for traces that support selections.
Note that an empty array means an empty selection where
the `unselected` are turned on for all points, whereas,
any other non-array values means no selection all where
the `selected` and `unselected` styles have no effect.
showlegend
Determines whether or not an item corresponding to this
trace is shown in the legend.
stream
:class:`plotly.graph_objects.histogram.Stream` instance
or dict with compatible properties
text
Sets hover text elements associated with each bar. If a
single string, the same string appears over all bars.
If an array of string, the items are mapped in order to
the this trace's coordinates.
textangle
Sets the angle of the tick labels with respect to the
bar. For example, a `tickangle` of -90 draws the tick
labels vertically. With "auto" the texts may
automatically be rotated to fit with the maximum size
in bars.
textfont
Sets the text font.
textposition
Specifies the location of the `text`. "inside"
positions `text` inside, next to the bar end (rotated
and scaled if needed). "outside" positions `text`
outside, next to the bar end (scaled if needed), unless
there is another bar stacked on this one, then the text
gets pushed inside. "auto" tries to position `text`
inside the bar, but if the bar is too small and no bar
is stacked on this one the text is moved outside. If
"none", no text appears.
textsrc
Sets the source reference on Chart Studio Cloud for
`text`.
texttemplate
Template string used for rendering the information text
that appear on points. Note that this will override
`textinfo`. Variables are inserted using %{variable},
for example "y: %{y}". Numbers are formatted using
d3-format's syntax %{variable:d3-format}, for example
"Price: %{y:$.2f}".
https://github.com/d3/d3-format/tree/v1.4.5#d3-format
for details on the formatting syntax. Dates are
formatted using d3-time-format's syntax
%{variable|d3-time-format}, for example "Day:
%{2019-01-01|%A}". https://github.com/d3/d3-time-
format/tree/v2.2.3#locale_format for details on the
date formatting syntax. Every attributes that can be
specified per-point (the ones that are `arrayOk: true`)
are available. Finally, the template string has access
to variables `label` and `value`.
uid
Assign an id to this trace, Use this to provide object
constancy between traces during animations and
transitions.
uirevision
Controls persistence of some user-driven changes to the
trace: `constraintrange` in `parcoords` traces, as well
as some `editable: true` modifications such as `name`
and `colorbar.title`. Defaults to `layout.uirevision`.
Note that other user-driven trace attribute changes are
controlled by `layout` attributes: `trace.visible` is
controlled by `layout.legend.uirevision`,
`selectedpoints` is controlled by
`layout.selectionrevision`, and `colorbar.(x|y)`
(accessible with `config: {editable: true}`) is
controlled by `layout.editrevision`. Trace changes are
tracked by `uid`, which only falls back on trace index
if no `uid` is provided. So if your app can add/remove
traces before the end of the `data` array, such that
the same trace has a different index, you can still
preserve user-driven changes if you give each trace a
`uid` that stays with it as it moves.
unselected
:class:`plotly.graph_objects.histogram.Unselected`
instance or dict with compatible properties
visible
Determines whether or not this trace is visible. If
"legendonly", the trace is not drawn, but can appear as
a legend item (provided that the legend itself is
visible).
x
Sets the sample data to be binned on the x axis.
xaxis
Sets a reference between this trace's x coordinates and
a 2D cartesian x axis. If "x" (the default value), the
x coordinates refer to `layout.xaxis`. If "x2", the x
coordinates refer to `layout.xaxis2`, and so on.
xbins
:class:`plotly.graph_objects.histogram.XBins` instance
or dict with compatible properties
xcalendar
Sets the calendar system to use with `x` date data.
xhoverformat
Sets the hover text formatting rulefor `x` using d3
formatting mini-languages which are very similar to
those in Python. For numbers, see:
https://github.com/d3/d3-format/tree/v1.4.5#d3-format.
And for dates see: https://github.com/d3/d3-time-
format/tree/v2.2.3#locale_format. We add two items to
d3's date formatter: "%h" for half of the year as a
decimal number as well as "%{n}f" for fractional
seconds with n digits. For example, *2016-10-13
09:15:23.456* with tickformat "%H~%M~%S.%2f" would
display *09~15~23.46*By default the values are
formatted using `xaxis.hoverformat`.
xsrc
Sets the source reference on Chart Studio Cloud for
`x`.
y
Sets the sample data to be binned on the y axis.
yaxis
Sets a reference between this trace's y coordinates and
a 2D cartesian y axis. If "y" (the default value), the
y coordinates refer to `layout.yaxis`. If "y2", the y
coordinates refer to `layout.yaxis2`, and so on.
ybins
:class:`plotly.graph_objects.histogram.YBins` instance
or dict with compatible properties
ycalendar
Sets the calendar system to use with `y` date data.
yhoverformat
Sets the hover text formatting rulefor `y` using d3
formatting mini-languages which are very similar to
those in Python. For numbers, see:
https://github.com/d3/d3-format/tree/v1.4.5#d3-format.
And for dates see: https://github.com/d3/d3-time-
format/tree/v2.2.3#locale_format. We add two items to
d3's date formatter: "%h" for half of the year as a
decimal number as well as "%{n}f" for fractional
seconds with n digits. For example, *2016-10-13
09:15:23.456* with tickformat "%H~%M~%S.%2f" would
display *09~15~23.46*By default the values are
formatted using `yaxis.hoverformat`.
ysrc
Sets the source reference on Chart Studio Cloud for
`y`.
"""
def __init__(
self,
arg=None,
alignmentgroup=None,
autobinx=None,
autobiny=None,
bingroup=None,
cliponaxis=None,
constraintext=None,
cumulative=None,
customdata=None,
customdatasrc=None,
error_x=None,
error_y=None,
histfunc=None,
histnorm=None,
hoverinfo=None,
hoverinfosrc=None,
hoverlabel=None,
hovertemplate=None,
hovertemplatesrc=None,
hovertext=None,
hovertextsrc=None,
ids=None,
idssrc=None,
insidetextanchor=None,
insidetextfont=None,
legend=None,
legendgroup=None,
legendgrouptitle=None,
legendrank=None,
legendwidth=None,
marker=None,
meta=None,
metasrc=None,
name=None,
nbinsx=None,
nbinsy=None,
offsetgroup=None,
opacity=None,
orientation=None,
outsidetextfont=None,
selected=None,
selectedpoints=None,
showlegend=None,
stream=None,
text=None,
textangle=None,
textfont=None,
textposition=None,
textsrc=None,
texttemplate=None,
uid=None,
uirevision=None,
unselected=None,
visible=None,
x=None,
xaxis=None,
xbins=None,
xcalendar=None,
xhoverformat=None,
xsrc=None,
y=None,
yaxis=None,
ybins=None,
ycalendar=None,
yhoverformat=None,
ysrc=None,
**kwargs,
):
"""
Construct a new Histogram object
The sample data from which statistics are computed is set in
`x` for vertically spanning histograms and in `y` for
horizontally spanning histograms. Binning options are set
`xbins` and `ybins` respectively if no aggregation data is
provided.
Parameters
----------
arg
dict of properties compatible with this constructor or
an instance of :class:`plotly.graph_objs.Histogram`
alignmentgroup
Set several traces linked to the same position axis or
matching axes to the same alignmentgroup. This controls
whether bars compute their positional range dependently
or independently.
autobinx
Obsolete: since v1.42 each bin attribute is auto-
determined separately and `autobinx` is not needed.
However, we accept `autobinx: true` or `false` and will
update `xbins` accordingly before deleting `autobinx`
from the trace.
autobiny
Obsolete: since v1.42 each bin attribute is auto-
determined separately and `autobiny` is not needed.
However, we accept `autobiny: true` or `false` and will
update `ybins` accordingly before deleting `autobiny`
from the trace.
bingroup
Set a group of histogram traces which will have
compatible bin settings. Note that traces on the same
subplot and with the same "orientation" under `barmode`
"stack", "relative" and "group" are forced into the
same bingroup, Using `bingroup`, traces under `barmode`
"overlay" and on different axes (of the same axis type)
can have compatible bin settings. Note that histogram
and histogram2d* trace can share the same `bingroup`
cliponaxis
Determines whether the text nodes are clipped about the
subplot axes. To show the text nodes above axis lines
and tick labels, make sure to set `xaxis.layer` and
`yaxis.layer` to *below traces*.
constraintext
Constrain the size of text inside or outside a bar to
be no larger than the bar itself.
cumulative
:class:`plotly.graph_objects.histogram.Cumulative`
instance or dict with compatible properties
customdata
Assigns extra data each datum. This may be useful when
listening to hover, click and selection events. Note
that, "scatter" traces also appends customdata items in
the markers DOM elements
customdatasrc
Sets the source reference on Chart Studio Cloud for
`customdata`.
error_x
:class:`plotly.graph_objects.histogram.ErrorX` instance
or dict with compatible properties
error_y
:class:`plotly.graph_objects.histogram.ErrorY` instance
or dict with compatible properties
histfunc
Specifies the binning function used for this histogram
trace. If "count", the histogram values are computed by
counting the number of values lying inside each bin. If
"sum", "avg", "min", "max", the histogram values are
computed using the sum, the average, the minimum or the
maximum of the values lying inside each bin
respectively.
histnorm
Specifies the type of normalization used for this
histogram trace. If "", the span of each bar
corresponds to the number of occurrences (i.e. the
number of data points lying inside the bins). If
"percent" / "probability", the span of each bar
corresponds to the percentage / fraction of occurrences
with respect to the total number of sample points
(here, the sum of all bin HEIGHTS equals 100% / 1). If
"density", the span of each bar corresponds to the
number of occurrences in a bin divided by the size of
the bin interval (here, the sum of all bin AREAS equals
the total number of sample points). If *probability
density*, the area of each bar corresponds to the
probability that an event will fall into the
corresponding bin (here, the sum of all bin AREAS
equals 1).
hoverinfo
Determines which trace information appear on hover. If
`none` or `skip` are set, no information is displayed
upon hovering. But, if `none` is set, click and hover
events are still fired.
hoverinfosrc
Sets the source reference on Chart Studio Cloud for
`hoverinfo`.
hoverlabel
:class:`plotly.graph_objects.histogram.Hoverlabel`
instance or dict with compatible properties
hovertemplate
Template string used for rendering the information that
appear on hover box. Note that this will override
`hoverinfo`. Variables are inserted using %{variable},
for example "y: %{y}" as well as %{xother}, {%_xother},
{%_xother_}, {%xother_}. When showing info for several
points, "xother" will be added to those with different
x positions from the first point. An underscore before
or after "(x|y)other" will add a space on that side,
only when this field is shown. Numbers are formatted
using d3-format's syntax %{variable:d3-format}, for
example "Price: %{y:$.2f}".
https://github.com/d3/d3-format/tree/v1.4.5#d3-format
for details on the formatting syntax. Dates are
formatted using d3-time-format's syntax
%{variable|d3-time-format}, for example "Day:
%{2019-01-01|%A}". https://github.com/d3/d3-time-
format/tree/v2.2.3#locale_format for details on the
date formatting syntax. The variables available in
`hovertemplate` are the ones emitted as event data
described at this link
https://plotly.com/javascript/plotlyjs-events/#event-
data. Additionally, every attributes that can be
specified per-point (the ones that are `arrayOk: true`)
are available. Finally, the template string has access
to variable `binNumber` Anything contained in tag
`<extra>` is displayed in the secondary box, for
example "<extra>{fullData.name}</extra>". To hide the
secondary box completely, use an empty tag
`<extra></extra>`.
hovertemplatesrc
Sets the source reference on Chart Studio Cloud for
`hovertemplate`.
hovertext
Same as `text`.
hovertextsrc
Sets the source reference on Chart Studio Cloud for
`hovertext`.
ids
Assigns id labels to each datum. These ids for object
constancy of data points during animation. Should be an
array of strings, not numbers or any other type.
idssrc
Sets the source reference on Chart Studio Cloud for
`ids`.
insidetextanchor
Determines if texts are kept at center or start/end
points in `textposition` "inside" mode.
insidetextfont
Sets the font used for `text` lying inside the bar.
legend
Sets the reference to a legend to show this trace in.
References to these legends are "legend", "legend2",
"legend3", etc. Settings for these legends are set in
the layout, under `layout.legend`, `layout.legend2`,
etc.
legendgroup
Sets the legend group for this trace. Traces and shapes
part of the same legend group hide/show at the same
time when toggling legend items.
legendgrouptitle
:class:`plotly.graph_objects.histogram.Legendgrouptitle
` instance or dict with compatible properties
legendrank
Sets the legend rank for this trace. Items and groups
with smaller ranks are presented on top/left side while
with "reversed" `legend.traceorder` they are on
bottom/right side. The default legendrank is 1000, so
that you can use ranks less than 1000 to place certain
items before all unranked items, and ranks greater than
1000 to go after all unranked items. When having
unranked or equal rank items shapes would be displayed
after traces i.e. according to their order in data and
layout.
legendwidth
Sets the width (in px or fraction) of the legend for
this trace.
marker
:class:`plotly.graph_objects.histogram.Marker` instance
or dict with compatible properties
meta
Assigns extra meta information associated with this
trace that can be used in various text attributes.
Attributes such as trace `name`, graph, axis and
colorbar `title.text`, annotation `text`
`rangeselector`, `updatemenues` and `sliders` `label`
text all support `meta`. To access the trace `meta`
values in an attribute in the same trace, simply use
`%{meta[i]}` where `i` is the index or key of the
`meta` item in question. To access trace `meta` in
layout attributes, use `%{data[n[.meta[i]}` where `i`
is the index or key of the `meta` and `n` is the trace
index.
metasrc
Sets the source reference on Chart Studio Cloud for
`meta`.
name
Sets the trace name. The trace name appears as the
legend item and on hover.
nbinsx
Specifies the maximum number of desired bins. This
value will be used in an algorithm that will decide the
optimal bin size such that the histogram best
visualizes the distribution of the data. Ignored if
`xbins.size` is provided.
nbinsy
Specifies the maximum number of desired bins. This
value will be used in an algorithm that will decide the
optimal bin size such that the histogram best
visualizes the distribution of the data. Ignored if
`ybins.size` is provided.
offsetgroup
Set several traces linked to the same position axis or
matching axes to the same offsetgroup where bars of the
same position coordinate will line up.
opacity
Sets the opacity of the trace.
orientation
Sets the orientation of the bars. With "v" ("h"), the
value of the each bar spans along the vertical
(horizontal).
outsidetextfont
Sets the font used for `text` lying outside the bar.
selected
:class:`plotly.graph_objects.histogram.Selected`
instance or dict with compatible properties
selectedpoints
Array containing integer indices of selected points.
Has an effect only for traces that support selections.
Note that an empty array means an empty selection where
the `unselected` are turned on for all points, whereas,
any other non-array values means no selection all where
the `selected` and `unselected` styles have no effect.
showlegend
Determines whether or not an item corresponding to this
trace is shown in the legend.
stream
:class:`plotly.graph_objects.histogram.Stream` instance
or dict with compatible properties
text
Sets hover text elements associated with each bar. If a
single string, the same string appears over all bars.
If an array of string, the items are mapped in order to
the this trace's coordinates.
textangle
Sets the angle of the tick labels with respect to the
bar. For example, a `tickangle` of -90 draws the tick
labels vertically. With "auto" the texts may
automatically be rotated to fit with the maximum size
in bars.
textfont
Sets the text font.
textposition
Specifies the location of the `text`. "inside"
positions `text` inside, next to the bar end (rotated
and scaled if needed). "outside" positions `text`
outside, next to the bar end (scaled if needed), unless
there is another bar stacked on this one, then the text
gets pushed inside. "auto" tries to position `text`
inside the bar, but if the bar is too small and no bar
is stacked on this one the text is moved outside. If
"none", no text appears.
textsrc
Sets the source reference on Chart Studio Cloud for
`text`.
texttemplate
Template string used for rendering the information text
that appear on points. Note that this will override
`textinfo`. Variables are inserted using %{variable},
for example "y: %{y}". Numbers are formatted using
d3-format's syntax %{variable:d3-format}, for example
"Price: %{y:$.2f}".
https://github.com/d3/d3-format/tree/v1.4.5#d3-format
for details on the formatting syntax. Dates are
formatted using d3-time-format's syntax
%{variable|d3-time-format}, for example "Day:
%{2019-01-01|%A}". https://github.com/d3/d3-time-
format/tree/v2.2.3#locale_format for details on the
date formatting syntax. Every attributes that can be
specified per-point (the ones that are `arrayOk: true`)
are available. Finally, the template string has access
to variables `label` and `value`.
uid
Assign an id to this trace, Use this to provide object
constancy between traces during animations and
transitions.
uirevision
Controls persistence of some user-driven changes to the
trace: `constraintrange` in `parcoords` traces, as well
as some `editable: true` modifications such as `name`
and `colorbar.title`. Defaults to `layout.uirevision`.
Note that other user-driven trace attribute changes are
controlled by `layout` attributes: `trace.visible` is
controlled by `layout.legend.uirevision`,
`selectedpoints` is controlled by
`layout.selectionrevision`, and `colorbar.(x|y)`
(accessible with `config: {editable: true}`) is
controlled by `layout.editrevision`. Trace changes are
tracked by `uid`, which only falls back on trace index
if no `uid` is provided. So if your app can add/remove
traces before the end of the `data` array, such that
the same trace has a different index, you can still
preserve user-driven changes if you give each trace a
`uid` that stays with it as it moves.
unselected
:class:`plotly.graph_objects.histogram.Unselected`
instance or dict with compatible properties
visible
Determines whether or not this trace is visible. If
"legendonly", the trace is not drawn, but can appear as
a legend item (provided that the legend itself is
visible).
x
Sets the sample data to be binned on the x axis.
xaxis
Sets a reference between this trace's x coordinates and
a 2D cartesian x axis. If "x" (the default value), the
x coordinates refer to `layout.xaxis`. If "x2", the x
coordinates refer to `layout.xaxis2`, and so on.
xbins
:class:`plotly.graph_objects.histogram.XBins` instance
or dict with compatible properties
xcalendar
Sets the calendar system to use with `x` date data.
xhoverformat
Sets the hover text formatting rulefor `x` using d3
formatting mini-languages which are very similar to
those in Python. For numbers, see:
https://github.com/d3/d3-format/tree/v1.4.5#d3-format.
And for dates see: https://github.com/d3/d3-time-
format/tree/v2.2.3#locale_format. We add two items to
d3's date formatter: "%h" for half of the year as a
decimal number as well as "%{n}f" for fractional
seconds with n digits. For example, *2016-10-13
09:15:23.456* with tickformat "%H~%M~%S.%2f" would
display *09~15~23.46*By default the values are
formatted using `xaxis.hoverformat`.
xsrc
Sets the source reference on Chart Studio Cloud for
`x`.
y
Sets the sample data to be binned on the y axis.
yaxis
Sets a reference between this trace's y coordinates and
a 2D cartesian y axis. If "y" (the default value), the
y coordinates refer to `layout.yaxis`. If "y2", the y
coordinates refer to `layout.yaxis2`, and so on.
ybins
:class:`plotly.graph_objects.histogram.YBins` instance
or dict with compatible properties
ycalendar
Sets the calendar system to use with `y` date data.
yhoverformat
Sets the hover text formatting rulefor `y` using d3
formatting mini-languages which are very similar to
those in Python. For numbers, see:
https://github.com/d3/d3-format/tree/v1.4.5#d3-format.
And for dates see: https://github.com/d3/d3-time-
format/tree/v2.2.3#locale_format. We add two items to
d3's date formatter: "%h" for half of the year as a
decimal number as well as "%{n}f" for fractional
seconds with n digits. For example, *2016-10-13
09:15:23.456* with tickformat "%H~%M~%S.%2f" would
display *09~15~23.46*By default the values are
formatted using `yaxis.hoverformat`.
ysrc
Sets the source reference on Chart Studio Cloud for
`y`.
Returns
-------
Histogram
"""
super(Histogram, self).__init__("histogram")
if "_parent" in kwargs:
self._parent = kwargs["_parent"]
return
# Validate arg
# ------------
if arg is None:
arg = {}
elif isinstance(arg, self.__class__):
arg = arg.to_plotly_json()
elif isinstance(arg, dict):
arg = _copy.copy(arg)
else:
raise ValueError(
"""\
The first argument to the plotly.graph_objs.Histogram
constructor must be a dict or
an instance of :class:`plotly.graph_objs.Histogram`"""
)
# Handle skip_invalid
# -------------------
self._skip_invalid = kwargs.pop("skip_invalid", False)
self._validate = kwargs.pop("_validate", True)
# Populate data dict with properties
# ----------------------------------
_v = arg.pop("alignmentgroup", None)
_v = alignmentgroup if alignmentgroup is not None else _v
if _v is not None:
self["alignmentgroup"] = _v
_v = arg.pop("autobinx", None)
_v = autobinx if autobinx is not None else _v
if _v is not None:
self["autobinx"] = _v
_v = arg.pop("autobiny", None)
_v = autobiny if autobiny is not None else _v
if _v is not None:
self["autobiny"] = _v
_v = arg.pop("bingroup", None)
_v = bingroup if bingroup is not None else _v
if _v is not None:
self["bingroup"] = _v
_v = arg.pop("cliponaxis", None)
_v = cliponaxis if cliponaxis is not None else _v
if _v is not None:
self["cliponaxis"] = _v
_v = arg.pop("constraintext", None)
_v = constraintext if constraintext is not None else _v
if _v is not None:
self["constraintext"] = _v
_v = arg.pop("cumulative", None)
_v = cumulative if cumulative is not None else _v
if _v is not None:
self["cumulative"] = _v
_v = arg.pop("customdata", None)
_v = customdata if customdata is not None else _v
if _v is not None:
self["customdata"] = _v
_v = arg.pop("customdatasrc", None)
_v = customdatasrc if customdatasrc is not None else _v
if _v is not None:
self["customdatasrc"] = _v
_v = arg.pop("error_x", None)
_v = error_x if error_x is not None else _v
if _v is not None:
self["error_x"] = _v
_v = arg.pop("error_y", None)
_v = error_y if error_y is not None else _v
if _v is not None:
self["error_y"] = _v
_v = arg.pop("histfunc", None)
_v = histfunc if histfunc is not None else _v
if _v is not None:
self["histfunc"] = _v
_v = arg.pop("histnorm", None)
_v = histnorm if histnorm is not None else _v
if _v is not None:
self["histnorm"] = _v
_v = arg.pop("hoverinfo", None)
_v = hoverinfo if hoverinfo is not None else _v
if _v is not None:
self["hoverinfo"] = _v
_v = arg.pop("hoverinfosrc", None)
_v = hoverinfosrc if hoverinfosrc is not None else _v
if _v is not None:
self["hoverinfosrc"] = _v
_v = arg.pop("hoverlabel", None)
_v = hoverlabel if hoverlabel is not None else _v
if _v is not None:
self["hoverlabel"] = _v
_v = arg.pop("hovertemplate", None)
_v = hovertemplate if hovertemplate is not None else _v
if _v is not None:
self["hovertemplate"] = _v
_v = arg.pop("hovertemplatesrc", None)
_v = hovertemplatesrc if hovertemplatesrc is not None else _v
if _v is not None:
self["hovertemplatesrc"] = _v
_v = arg.pop("hovertext", None)
_v = hovertext if hovertext is not None else _v
if _v is not None:
self["hovertext"] = _v
_v = arg.pop("hovertextsrc", None)
_v = hovertextsrc if hovertextsrc is not None else _v
if _v is not None:
self["hovertextsrc"] = _v
_v = arg.pop("ids", None)
_v = ids if ids is not None else _v
if _v is not None:
self["ids"] = _v
_v = arg.pop("idssrc", None)
_v = idssrc if idssrc is not None else _v
if _v is not None:
self["idssrc"] = _v
_v = arg.pop("insidetextanchor", None)
_v = insidetextanchor if insidetextanchor is not None else _v
if _v is not None:
self["insidetextanchor"] = _v
_v = arg.pop("insidetextfont", None)
_v = insidetextfont if insidetextfont is not None else _v
if _v is not None:
self["insidetextfont"] = _v
_v = arg.pop("legend", None)
_v = legend if legend is not None else _v
if _v is not None:
self["legend"] = _v
_v = arg.pop("legendgroup", None)
_v = legendgroup if legendgroup is not None else _v
if _v is not None:
self["legendgroup"] = _v
_v = arg.pop("legendgrouptitle", None)
_v = legendgrouptitle if legendgrouptitle is not None else _v
if _v is not None:
self["legendgrouptitle"] = _v
_v = arg.pop("legendrank", None)
_v = legendrank if legendrank is not None else _v
if _v is not None:
self["legendrank"] = _v
_v = arg.pop("legendwidth", None)
_v = legendwidth if legendwidth is not None else _v
if _v is not None:
self["legendwidth"] = _v
_v = arg.pop("marker", None)
_v = marker if marker is not None else _v
if _v is not None:
self["marker"] = _v
_v = arg.pop("meta", None)
_v = meta if meta is not None else _v
if _v is not None:
self["meta"] = _v
_v = arg.pop("metasrc", None)
_v = metasrc if metasrc is not None else _v
if _v is not None:
self["metasrc"] = _v
_v = arg.pop("name", None)
_v = name if name is not None else _v
if _v is not None:
self["name"] = _v
_v = arg.pop("nbinsx", None)
_v = nbinsx if nbinsx is not None else _v
if _v is not None:
self["nbinsx"] = _v
_v = arg.pop("nbinsy", None)
_v = nbinsy if nbinsy is not None else _v
if _v is not None:
self["nbinsy"] = _v
_v = arg.pop("offsetgroup", None)
_v = offsetgroup if offsetgroup is not None else _v
if _v is not None:
self["offsetgroup"] = _v
_v = arg.pop("opacity", None)
_v = opacity if opacity is not None else _v
if _v is not None:
self["opacity"] = _v
_v = arg.pop("orientation", None)
_v = orientation if orientation is not None else _v
if _v is not None:
self["orientation"] = _v
_v = arg.pop("outsidetextfont", None)
_v = outsidetextfont if outsidetextfont is not None else _v
if _v is not None:
self["outsidetextfont"] = _v
_v = arg.pop("selected", None)
_v = selected if selected is not None else _v
if _v is not None:
self["selected"] = _v
_v = arg.pop("selectedpoints", None)
_v = selectedpoints if selectedpoints is not None else _v
if _v is not None:
self["selectedpoints"] = _v
_v = arg.pop("showlegend", None)
_v = showlegend if showlegend is not None else _v
if _v is not None:
self["showlegend"] = _v
_v = arg.pop("stream", None)
_v = stream if stream is not None else _v
if _v is not None:
self["stream"] = _v
_v = arg.pop("text", None)
_v = text if text is not None else _v
if _v is not None:
self["text"] = _v
_v = arg.pop("textangle", None)
_v = textangle if textangle is not None else _v
if _v is not None:
self["textangle"] = _v
_v = arg.pop("textfont", None)
_v = textfont if textfont is not None else _v
if _v is not None:
self["textfont"] = _v
_v = arg.pop("textposition", None)
_v = textposition if textposition is not None else _v
if _v is not None:
self["textposition"] = _v
_v = arg.pop("textsrc", None)
_v = textsrc if textsrc is not None else _v
if _v is not None:
self["textsrc"] = _v
_v = arg.pop("texttemplate", None)
_v = texttemplate if texttemplate is not None else _v
if _v is not None:
self["texttemplate"] = _v
_v = arg.pop("uid", None)
_v = uid if uid is not None else _v
if _v is not None:
self["uid"] = _v
_v = arg.pop("uirevision", None)
_v = uirevision if uirevision is not None else _v
if _v is not None:
self["uirevision"] = _v
_v = arg.pop("unselected", None)
_v = unselected if unselected is not None else _v
if _v is not None:
self["unselected"] = _v
_v = arg.pop("visible", None)
_v = visible if visible is not None else _v
if _v is not None:
self["visible"] = _v
_v = arg.pop("x", None)
_v = x if x is not None else _v
if _v is not None:
self["x"] = _v
_v = arg.pop("xaxis", None)
_v = xaxis if xaxis is not None else _v
if _v is not None:
self["xaxis"] = _v
_v = arg.pop("xbins", None)
_v = xbins if xbins is not None else _v
if _v is not None:
self["xbins"] = _v
_v = arg.pop("xcalendar", None)
_v = xcalendar if xcalendar is not None else _v
if _v is not None:
self["xcalendar"] = _v
_v = arg.pop("xhoverformat", None)
_v = xhoverformat if xhoverformat is not None else _v
if _v is not None:
self["xhoverformat"] = _v
_v = arg.pop("xsrc", None)
_v = xsrc if xsrc is not None else _v
if _v is not None:
self["xsrc"] = _v
_v = arg.pop("y", None)
_v = y if y is not None else _v
if _v is not None:
self["y"] = _v
_v = arg.pop("yaxis", None)
_v = yaxis if yaxis is not None else _v
if _v is not None:
self["yaxis"] = _v
_v = arg.pop("ybins", None)
_v = ybins if ybins is not None else _v
if _v is not None:
self["ybins"] = _v
_v = arg.pop("ycalendar", None)
_v = ycalendar if ycalendar is not None else _v
if _v is not None:
self["ycalendar"] = _v
_v = arg.pop("yhoverformat", None)
_v = yhoverformat if yhoverformat is not None else _v
if _v is not None:
self["yhoverformat"] = _v
_v = arg.pop("ysrc", None)
_v = ysrc if ysrc is not None else _v
if _v is not None:
self["ysrc"] = _v
# Read-only literals
# ------------------
self._props["type"] = "histogram"
arg.pop("type", None)
# Process unknown kwargs
# ----------------------
self._process_kwargs(**dict(arg, **kwargs))
# Reset skip_invalid
# ------------------
self._skip_invalid = False