wg-backend-django/dell-env/lib/python3.11/site-packages/plotly/graph_objs/_pointcloud.py
2023-10-30 14:40:43 +07:00

1619 lines
51 KiB
Python

from plotly.basedatatypes import BaseTraceType as _BaseTraceType
import copy as _copy
class Pointcloud(_BaseTraceType):
# class properties
# --------------------
_parent_path_str = ""
_path_str = "pointcloud"
_valid_props = {
"customdata",
"customdatasrc",
"hoverinfo",
"hoverinfosrc",
"hoverlabel",
"ids",
"idssrc",
"indices",
"indicessrc",
"legend",
"legendgroup",
"legendgrouptitle",
"legendrank",
"legendwidth",
"marker",
"meta",
"metasrc",
"name",
"opacity",
"showlegend",
"stream",
"text",
"textsrc",
"type",
"uid",
"uirevision",
"visible",
"x",
"xaxis",
"xbounds",
"xboundssrc",
"xsrc",
"xy",
"xysrc",
"y",
"yaxis",
"ybounds",
"yboundssrc",
"ysrc",
}
# customdata
# ----------
@property
def customdata(self):
"""
Assigns extra data each datum. This may be useful when
listening to hover, click and selection events. Note that,
"scatter" traces also appends customdata items in the markers
DOM elements
The 'customdata' property is an array that may be specified as a tuple,
list, numpy array, or pandas Series
Returns
-------
numpy.ndarray
"""
return self["customdata"]
@customdata.setter
def customdata(self, val):
self["customdata"] = val
# customdatasrc
# -------------
@property
def customdatasrc(self):
"""
Sets the source reference on Chart Studio Cloud for
`customdata`.
The 'customdatasrc' property must be specified as a string or
as a plotly.grid_objs.Column object
Returns
-------
str
"""
return self["customdatasrc"]
@customdatasrc.setter
def customdatasrc(self, val):
self["customdatasrc"] = val
# hoverinfo
# ---------
@property
def hoverinfo(self):
"""
Determines which trace information appear on hover. If `none`
or `skip` are set, no information is displayed upon hovering.
But, if `none` is set, click and hover events are still fired.
The 'hoverinfo' property is a flaglist and may be specified
as a string containing:
- Any combination of ['x', 'y', 'z', 'text', 'name'] joined with '+' characters
(e.g. 'x+y')
OR exactly one of ['all', 'none', 'skip'] (e.g. 'skip')
- A list or array of the above
Returns
-------
Any|numpy.ndarray
"""
return self["hoverinfo"]
@hoverinfo.setter
def hoverinfo(self, val):
self["hoverinfo"] = val
# hoverinfosrc
# ------------
@property
def hoverinfosrc(self):
"""
Sets the source reference on Chart Studio Cloud for
`hoverinfo`.
The 'hoverinfosrc' property must be specified as a string or
as a plotly.grid_objs.Column object
Returns
-------
str
"""
return self["hoverinfosrc"]
@hoverinfosrc.setter
def hoverinfosrc(self, val):
self["hoverinfosrc"] = val
# hoverlabel
# ----------
@property
def hoverlabel(self):
"""
The 'hoverlabel' property is an instance of Hoverlabel
that may be specified as:
- An instance of :class:`plotly.graph_objs.pointcloud.Hoverlabel`
- A dict of string/value properties that will be passed
to the Hoverlabel constructor
Supported dict properties:
align
Sets the horizontal alignment of the text
content within hover label box. Has an effect
only if the hover label text spans more two or
more lines
alignsrc
Sets the source reference on Chart Studio Cloud
for `align`.
bgcolor
Sets the background color of the hover labels
for this trace
bgcolorsrc
Sets the source reference on Chart Studio Cloud
for `bgcolor`.
bordercolor
Sets the border color of the hover labels for
this trace.
bordercolorsrc
Sets the source reference on Chart Studio Cloud
for `bordercolor`.
font
Sets the font used in hover labels.
namelength
Sets the default length (in number of
characters) of the trace name in the hover
labels for all traces. -1 shows the whole name
regardless of length. 0-3 shows the first 0-3
characters, and an integer >3 will show the
whole name if it is less than that many
characters, but if it is longer, will truncate
to `namelength - 3` characters and add an
ellipsis.
namelengthsrc
Sets the source reference on Chart Studio Cloud
for `namelength`.
Returns
-------
plotly.graph_objs.pointcloud.Hoverlabel
"""
return self["hoverlabel"]
@hoverlabel.setter
def hoverlabel(self, val):
self["hoverlabel"] = val
# ids
# ---
@property
def ids(self):
"""
Assigns id labels to each datum. These ids for object constancy
of data points during animation. Should be an array of strings,
not numbers or any other type.
The 'ids' property is an array that may be specified as a tuple,
list, numpy array, or pandas Series
Returns
-------
numpy.ndarray
"""
return self["ids"]
@ids.setter
def ids(self, val):
self["ids"] = val
# idssrc
# ------
@property
def idssrc(self):
"""
Sets the source reference on Chart Studio Cloud for `ids`.
The 'idssrc' property must be specified as a string or
as a plotly.grid_objs.Column object
Returns
-------
str
"""
return self["idssrc"]
@idssrc.setter
def idssrc(self, val):
self["idssrc"] = val
# indices
# -------
@property
def indices(self):
"""
A sequential value, 0..n, supply it to avoid creating this
array inside plotting. If specified, it must be a typed
`Int32Array` array. Its length must be equal to or greater than
the number of points. For the best performance and memory use,
create one large `indices` typed array that is guaranteed to be
at least as long as the largest number of points during use,
and reuse it on each `Plotly.restyle()` call.
The 'indices' property is an array that may be specified as a tuple,
list, numpy array, or pandas Series
Returns
-------
numpy.ndarray
"""
return self["indices"]
@indices.setter
def indices(self, val):
self["indices"] = val
# indicessrc
# ----------
@property
def indicessrc(self):
"""
Sets the source reference on Chart Studio Cloud for `indices`.
The 'indicessrc' property must be specified as a string or
as a plotly.grid_objs.Column object
Returns
-------
str
"""
return self["indicessrc"]
@indicessrc.setter
def indicessrc(self, val):
self["indicessrc"] = val
# legend
# ------
@property
def legend(self):
"""
Sets the reference to a legend to show this trace in.
References to these legends are "legend", "legend2", "legend3",
etc. Settings for these legends are set in the layout, under
`layout.legend`, `layout.legend2`, etc.
The 'legend' property is an identifier of a particular
subplot, of type 'legend', that may be specified as the string 'legend'
optionally followed by an integer >= 1
(e.g. 'legend', 'legend1', 'legend2', 'legend3', etc.)
Returns
-------
str
"""
return self["legend"]
@legend.setter
def legend(self, val):
self["legend"] = val
# legendgroup
# -----------
@property
def legendgroup(self):
"""
Sets the legend group for this trace. Traces and shapes part of
the same legend group hide/show at the same time when toggling
legend items.
The 'legendgroup' property is a string and must be specified as:
- A string
- A number that will be converted to a string
Returns
-------
str
"""
return self["legendgroup"]
@legendgroup.setter
def legendgroup(self, val):
self["legendgroup"] = val
# legendgrouptitle
# ----------------
@property
def legendgrouptitle(self):
"""
The 'legendgrouptitle' property is an instance of Legendgrouptitle
that may be specified as:
- An instance of :class:`plotly.graph_objs.pointcloud.Legendgrouptitle`
- A dict of string/value properties that will be passed
to the Legendgrouptitle constructor
Supported dict properties:
font
Sets this legend group's title font.
text
Sets the title of the legend group.
Returns
-------
plotly.graph_objs.pointcloud.Legendgrouptitle
"""
return self["legendgrouptitle"]
@legendgrouptitle.setter
def legendgrouptitle(self, val):
self["legendgrouptitle"] = val
# legendrank
# ----------
@property
def legendrank(self):
"""
Sets the legend rank for this trace. Items and groups with
smaller ranks are presented on top/left side while with
"reversed" `legend.traceorder` they are on bottom/right side.
The default legendrank is 1000, so that you can use ranks less
than 1000 to place certain items before all unranked items, and
ranks greater than 1000 to go after all unranked items. When
having unranked or equal rank items shapes would be displayed
after traces i.e. according to their order in data and layout.
The 'legendrank' property is a number and may be specified as:
- An int or float
Returns
-------
int|float
"""
return self["legendrank"]
@legendrank.setter
def legendrank(self, val):
self["legendrank"] = val
# legendwidth
# -----------
@property
def legendwidth(self):
"""
Sets the width (in px or fraction) of the legend for this
trace.
The 'legendwidth' property is a number and may be specified as:
- An int or float in the interval [0, inf]
Returns
-------
int|float
"""
return self["legendwidth"]
@legendwidth.setter
def legendwidth(self, val):
self["legendwidth"] = val
# marker
# ------
@property
def marker(self):
"""
The 'marker' property is an instance of Marker
that may be specified as:
- An instance of :class:`plotly.graph_objs.pointcloud.Marker`
- A dict of string/value properties that will be passed
to the Marker constructor
Supported dict properties:
blend
Determines if colors are blended together for a
translucency effect in case `opacity` is
specified as a value less then `1`. Setting
`blend` to `true` reduces zoom/pan speed if
used with large numbers of points.
border
:class:`plotly.graph_objects.pointcloud.marker.
Border` instance or dict with compatible
properties
color
Sets the marker fill color. It accepts a
specific color. If the color is not fully
opaque and there are hundreds of thousands of
points, it may cause slower zooming and
panning.
opacity
Sets the marker opacity. The default value is
`1` (fully opaque). If the markers are not
fully opaque and there are hundreds of
thousands of points, it may cause slower
zooming and panning. Opacity fades the color
even if `blend` is left on `false` even if
there is no translucency effect in that case.
sizemax
Sets the maximum size (in px) of the rendered
marker points. Effective when the `pointcloud`
shows only few points.
sizemin
Sets the minimum size (in px) of the rendered
marker points, effective when the `pointcloud`
shows a million or more points.
Returns
-------
plotly.graph_objs.pointcloud.Marker
"""
return self["marker"]
@marker.setter
def marker(self, val):
self["marker"] = val
# meta
# ----
@property
def meta(self):
"""
Assigns extra meta information associated with this trace that
can be used in various text attributes. Attributes such as
trace `name`, graph, axis and colorbar `title.text`, annotation
`text` `rangeselector`, `updatemenues` and `sliders` `label`
text all support `meta`. To access the trace `meta` values in
an attribute in the same trace, simply use `%{meta[i]}` where
`i` is the index or key of the `meta` item in question. To
access trace `meta` in layout attributes, use
`%{data[n[.meta[i]}` where `i` is the index or key of the
`meta` and `n` is the trace index.
The 'meta' property accepts values of any type
Returns
-------
Any|numpy.ndarray
"""
return self["meta"]
@meta.setter
def meta(self, val):
self["meta"] = val
# metasrc
# -------
@property
def metasrc(self):
"""
Sets the source reference on Chart Studio Cloud for `meta`.
The 'metasrc' property must be specified as a string or
as a plotly.grid_objs.Column object
Returns
-------
str
"""
return self["metasrc"]
@metasrc.setter
def metasrc(self, val):
self["metasrc"] = val
# name
# ----
@property
def name(self):
"""
Sets the trace name. The trace name appears as the legend item
and on hover.
The 'name' property is a string and must be specified as:
- A string
- A number that will be converted to a string
Returns
-------
str
"""
return self["name"]
@name.setter
def name(self, val):
self["name"] = val
# opacity
# -------
@property
def opacity(self):
"""
Sets the opacity of the trace.
The 'opacity' property is a number and may be specified as:
- An int or float in the interval [0, 1]
Returns
-------
int|float
"""
return self["opacity"]
@opacity.setter
def opacity(self, val):
self["opacity"] = val
# showlegend
# ----------
@property
def showlegend(self):
"""
Determines whether or not an item corresponding to this trace
is shown in the legend.
The 'showlegend' property must be specified as a bool
(either True, or False)
Returns
-------
bool
"""
return self["showlegend"]
@showlegend.setter
def showlegend(self, val):
self["showlegend"] = val
# stream
# ------
@property
def stream(self):
"""
The 'stream' property is an instance of Stream
that may be specified as:
- An instance of :class:`plotly.graph_objs.pointcloud.Stream`
- A dict of string/value properties that will be passed
to the Stream constructor
Supported dict properties:
maxpoints
Sets the maximum number of points to keep on
the plots from an incoming stream. If
`maxpoints` is set to 50, only the newest 50
points will be displayed on the plot.
token
The stream id number links a data trace on a
plot with a stream. See https://chart-
studio.plotly.com/settings for more details.
Returns
-------
plotly.graph_objs.pointcloud.Stream
"""
return self["stream"]
@stream.setter
def stream(self, val):
self["stream"] = val
# text
# ----
@property
def text(self):
"""
Sets text elements associated with each (x,y) pair. If a single
string, the same string appears over all the data points. If an
array of string, the items are mapped in order to the this
trace's (x,y) coordinates. If trace `hoverinfo` contains a
"text" flag and "hovertext" is not set, these elements will be
seen in the hover labels.
The 'text' property is a string and must be specified as:
- A string
- A number that will be converted to a string
- A tuple, list, or one-dimensional numpy array of the above
Returns
-------
str|numpy.ndarray
"""
return self["text"]
@text.setter
def text(self, val):
self["text"] = val
# textsrc
# -------
@property
def textsrc(self):
"""
Sets the source reference on Chart Studio Cloud for `text`.
The 'textsrc' property must be specified as a string or
as a plotly.grid_objs.Column object
Returns
-------
str
"""
return self["textsrc"]
@textsrc.setter
def textsrc(self, val):
self["textsrc"] = val
# uid
# ---
@property
def uid(self):
"""
Assign an id to this trace, Use this to provide object
constancy between traces during animations and transitions.
The 'uid' property is a string and must be specified as:
- A string
- A number that will be converted to a string
Returns
-------
str
"""
return self["uid"]
@uid.setter
def uid(self, val):
self["uid"] = val
# uirevision
# ----------
@property
def uirevision(self):
"""
Controls persistence of some user-driven changes to the trace:
`constraintrange` in `parcoords` traces, as well as some
`editable: true` modifications such as `name` and
`colorbar.title`. Defaults to `layout.uirevision`. Note that
other user-driven trace attribute changes are controlled by
`layout` attributes: `trace.visible` is controlled by
`layout.legend.uirevision`, `selectedpoints` is controlled by
`layout.selectionrevision`, and `colorbar.(x|y)` (accessible
with `config: {editable: true}`) is controlled by
`layout.editrevision`. Trace changes are tracked by `uid`,
which only falls back on trace index if no `uid` is provided.
So if your app can add/remove traces before the end of the
`data` array, such that the same trace has a different index,
you can still preserve user-driven changes if you give each
trace a `uid` that stays with it as it moves.
The 'uirevision' property accepts values of any type
Returns
-------
Any
"""
return self["uirevision"]
@uirevision.setter
def uirevision(self, val):
self["uirevision"] = val
# visible
# -------
@property
def visible(self):
"""
Determines whether or not this trace is visible. If
"legendonly", the trace is not drawn, but can appear as a
legend item (provided that the legend itself is visible).
The 'visible' property is an enumeration that may be specified as:
- One of the following enumeration values:
[True, False, 'legendonly']
Returns
-------
Any
"""
return self["visible"]
@visible.setter
def visible(self, val):
self["visible"] = val
# x
# -
@property
def x(self):
"""
Sets the x coordinates.
The 'x' property is an array that may be specified as a tuple,
list, numpy array, or pandas Series
Returns
-------
numpy.ndarray
"""
return self["x"]
@x.setter
def x(self, val):
self["x"] = val
# xaxis
# -----
@property
def xaxis(self):
"""
Sets a reference between this trace's x coordinates and a 2D
cartesian x axis. If "x" (the default value), the x coordinates
refer to `layout.xaxis`. If "x2", the x coordinates refer to
`layout.xaxis2`, and so on.
The 'xaxis' property is an identifier of a particular
subplot, of type 'x', that may be specified as the string 'x'
optionally followed by an integer >= 1
(e.g. 'x', 'x1', 'x2', 'x3', etc.)
Returns
-------
str
"""
return self["xaxis"]
@xaxis.setter
def xaxis(self, val):
self["xaxis"] = val
# xbounds
# -------
@property
def xbounds(self):
"""
Specify `xbounds` in the shape of `[xMin, xMax] to avoid
looping through the `xy` typed array. Use it in conjunction
with `xy` and `ybounds` for the performance benefits.
The 'xbounds' property is an array that may be specified as a tuple,
list, numpy array, or pandas Series
Returns
-------
numpy.ndarray
"""
return self["xbounds"]
@xbounds.setter
def xbounds(self, val):
self["xbounds"] = val
# xboundssrc
# ----------
@property
def xboundssrc(self):
"""
Sets the source reference on Chart Studio Cloud for `xbounds`.
The 'xboundssrc' property must be specified as a string or
as a plotly.grid_objs.Column object
Returns
-------
str
"""
return self["xboundssrc"]
@xboundssrc.setter
def xboundssrc(self, val):
self["xboundssrc"] = val
# xsrc
# ----
@property
def xsrc(self):
"""
Sets the source reference on Chart Studio Cloud for `x`.
The 'xsrc' property must be specified as a string or
as a plotly.grid_objs.Column object
Returns
-------
str
"""
return self["xsrc"]
@xsrc.setter
def xsrc(self, val):
self["xsrc"] = val
# xy
# --
@property
def xy(self):
"""
Faster alternative to specifying `x` and `y` separately. If
supplied, it must be a typed `Float32Array` array that
represents points such that `xy[i * 2] = x[i]` and `xy[i * 2 +
1] = y[i]`
The 'xy' property is an array that may be specified as a tuple,
list, numpy array, or pandas Series
Returns
-------
numpy.ndarray
"""
return self["xy"]
@xy.setter
def xy(self, val):
self["xy"] = val
# xysrc
# -----
@property
def xysrc(self):
"""
Sets the source reference on Chart Studio Cloud for `xy`.
The 'xysrc' property must be specified as a string or
as a plotly.grid_objs.Column object
Returns
-------
str
"""
return self["xysrc"]
@xysrc.setter
def xysrc(self, val):
self["xysrc"] = val
# y
# -
@property
def y(self):
"""
Sets the y coordinates.
The 'y' property is an array that may be specified as a tuple,
list, numpy array, or pandas Series
Returns
-------
numpy.ndarray
"""
return self["y"]
@y.setter
def y(self, val):
self["y"] = val
# yaxis
# -----
@property
def yaxis(self):
"""
Sets a reference between this trace's y coordinates and a 2D
cartesian y axis. If "y" (the default value), the y coordinates
refer to `layout.yaxis`. If "y2", the y coordinates refer to
`layout.yaxis2`, and so on.
The 'yaxis' property is an identifier of a particular
subplot, of type 'y', that may be specified as the string 'y'
optionally followed by an integer >= 1
(e.g. 'y', 'y1', 'y2', 'y3', etc.)
Returns
-------
str
"""
return self["yaxis"]
@yaxis.setter
def yaxis(self, val):
self["yaxis"] = val
# ybounds
# -------
@property
def ybounds(self):
"""
Specify `ybounds` in the shape of `[yMin, yMax] to avoid
looping through the `xy` typed array. Use it in conjunction
with `xy` and `xbounds` for the performance benefits.
The 'ybounds' property is an array that may be specified as a tuple,
list, numpy array, or pandas Series
Returns
-------
numpy.ndarray
"""
return self["ybounds"]
@ybounds.setter
def ybounds(self, val):
self["ybounds"] = val
# yboundssrc
# ----------
@property
def yboundssrc(self):
"""
Sets the source reference on Chart Studio Cloud for `ybounds`.
The 'yboundssrc' property must be specified as a string or
as a plotly.grid_objs.Column object
Returns
-------
str
"""
return self["yboundssrc"]
@yboundssrc.setter
def yboundssrc(self, val):
self["yboundssrc"] = val
# ysrc
# ----
@property
def ysrc(self):
"""
Sets the source reference on Chart Studio Cloud for `y`.
The 'ysrc' property must be specified as a string or
as a plotly.grid_objs.Column object
Returns
-------
str
"""
return self["ysrc"]
@ysrc.setter
def ysrc(self, val):
self["ysrc"] = val
# type
# ----
@property
def type(self):
return self._props["type"]
# Self properties description
# ---------------------------
@property
def _prop_descriptions(self):
return """\
customdata
Assigns extra data each datum. This may be useful when
listening to hover, click and selection events. Note
that, "scatter" traces also appends customdata items in
the markers DOM elements
customdatasrc
Sets the source reference on Chart Studio Cloud for
`customdata`.
hoverinfo
Determines which trace information appear on hover. If
`none` or `skip` are set, no information is displayed
upon hovering. But, if `none` is set, click and hover
events are still fired.
hoverinfosrc
Sets the source reference on Chart Studio Cloud for
`hoverinfo`.
hoverlabel
:class:`plotly.graph_objects.pointcloud.Hoverlabel`
instance or dict with compatible properties
ids
Assigns id labels to each datum. These ids for object
constancy of data points during animation. Should be an
array of strings, not numbers or any other type.
idssrc
Sets the source reference on Chart Studio Cloud for
`ids`.
indices
A sequential value, 0..n, supply it to avoid creating
this array inside plotting. If specified, it must be a
typed `Int32Array` array. Its length must be equal to
or greater than the number of points. For the best
performance and memory use, create one large `indices`
typed array that is guaranteed to be at least as long
as the largest number of points during use, and reuse
it on each `Plotly.restyle()` call.
indicessrc
Sets the source reference on Chart Studio Cloud for
`indices`.
legend
Sets the reference to a legend to show this trace in.
References to these legends are "legend", "legend2",
"legend3", etc. Settings for these legends are set in
the layout, under `layout.legend`, `layout.legend2`,
etc.
legendgroup
Sets the legend group for this trace. Traces and shapes
part of the same legend group hide/show at the same
time when toggling legend items.
legendgrouptitle
:class:`plotly.graph_objects.pointcloud.Legendgrouptitl
e` instance or dict with compatible properties
legendrank
Sets the legend rank for this trace. Items and groups
with smaller ranks are presented on top/left side while
with "reversed" `legend.traceorder` they are on
bottom/right side. The default legendrank is 1000, so
that you can use ranks less than 1000 to place certain
items before all unranked items, and ranks greater than
1000 to go after all unranked items. When having
unranked or equal rank items shapes would be displayed
after traces i.e. according to their order in data and
layout.
legendwidth
Sets the width (in px or fraction) of the legend for
this trace.
marker
:class:`plotly.graph_objects.pointcloud.Marker`
instance or dict with compatible properties
meta
Assigns extra meta information associated with this
trace that can be used in various text attributes.
Attributes such as trace `name`, graph, axis and
colorbar `title.text`, annotation `text`
`rangeselector`, `updatemenues` and `sliders` `label`
text all support `meta`. To access the trace `meta`
values in an attribute in the same trace, simply use
`%{meta[i]}` where `i` is the index or key of the
`meta` item in question. To access trace `meta` in
layout attributes, use `%{data[n[.meta[i]}` where `i`
is the index or key of the `meta` and `n` is the trace
index.
metasrc
Sets the source reference on Chart Studio Cloud for
`meta`.
name
Sets the trace name. The trace name appears as the
legend item and on hover.
opacity
Sets the opacity of the trace.
showlegend
Determines whether or not an item corresponding to this
trace is shown in the legend.
stream
:class:`plotly.graph_objects.pointcloud.Stream`
instance or dict with compatible properties
text
Sets text elements associated with each (x,y) pair. If
a single string, the same string appears over all the
data points. If an array of string, the items are
mapped in order to the this trace's (x,y) coordinates.
If trace `hoverinfo` contains a "text" flag and
"hovertext" is not set, these elements will be seen in
the hover labels.
textsrc
Sets the source reference on Chart Studio Cloud for
`text`.
uid
Assign an id to this trace, Use this to provide object
constancy between traces during animations and
transitions.
uirevision
Controls persistence of some user-driven changes to the
trace: `constraintrange` in `parcoords` traces, as well
as some `editable: true` modifications such as `name`
and `colorbar.title`. Defaults to `layout.uirevision`.
Note that other user-driven trace attribute changes are
controlled by `layout` attributes: `trace.visible` is
controlled by `layout.legend.uirevision`,
`selectedpoints` is controlled by
`layout.selectionrevision`, and `colorbar.(x|y)`
(accessible with `config: {editable: true}`) is
controlled by `layout.editrevision`. Trace changes are
tracked by `uid`, which only falls back on trace index
if no `uid` is provided. So if your app can add/remove
traces before the end of the `data` array, such that
the same trace has a different index, you can still
preserve user-driven changes if you give each trace a
`uid` that stays with it as it moves.
visible
Determines whether or not this trace is visible. If
"legendonly", the trace is not drawn, but can appear as
a legend item (provided that the legend itself is
visible).
x
Sets the x coordinates.
xaxis
Sets a reference between this trace's x coordinates and
a 2D cartesian x axis. If "x" (the default value), the
x coordinates refer to `layout.xaxis`. If "x2", the x
coordinates refer to `layout.xaxis2`, and so on.
xbounds
Specify `xbounds` in the shape of `[xMin, xMax] to
avoid looping through the `xy` typed array. Use it in
conjunction with `xy` and `ybounds` for the performance
benefits.
xboundssrc
Sets the source reference on Chart Studio Cloud for
`xbounds`.
xsrc
Sets the source reference on Chart Studio Cloud for
`x`.
xy
Faster alternative to specifying `x` and `y`
separately. If supplied, it must be a typed
`Float32Array` array that represents points such that
`xy[i * 2] = x[i]` and `xy[i * 2 + 1] = y[i]`
xysrc
Sets the source reference on Chart Studio Cloud for
`xy`.
y
Sets the y coordinates.
yaxis
Sets a reference between this trace's y coordinates and
a 2D cartesian y axis. If "y" (the default value), the
y coordinates refer to `layout.yaxis`. If "y2", the y
coordinates refer to `layout.yaxis2`, and so on.
ybounds
Specify `ybounds` in the shape of `[yMin, yMax] to
avoid looping through the `xy` typed array. Use it in
conjunction with `xy` and `xbounds` for the performance
benefits.
yboundssrc
Sets the source reference on Chart Studio Cloud for
`ybounds`.
ysrc
Sets the source reference on Chart Studio Cloud for
`y`.
"""
def __init__(
self,
arg=None,
customdata=None,
customdatasrc=None,
hoverinfo=None,
hoverinfosrc=None,
hoverlabel=None,
ids=None,
idssrc=None,
indices=None,
indicessrc=None,
legend=None,
legendgroup=None,
legendgrouptitle=None,
legendrank=None,
legendwidth=None,
marker=None,
meta=None,
metasrc=None,
name=None,
opacity=None,
showlegend=None,
stream=None,
text=None,
textsrc=None,
uid=None,
uirevision=None,
visible=None,
x=None,
xaxis=None,
xbounds=None,
xboundssrc=None,
xsrc=None,
xy=None,
xysrc=None,
y=None,
yaxis=None,
ybounds=None,
yboundssrc=None,
ysrc=None,
**kwargs,
):
"""
Construct a new Pointcloud object
"pointcloud" trace is deprecated! Please consider switching to
the "scattergl" trace type. The data visualized as a point
cloud set in `x` and `y` using the WebGl plotting engine.
Parameters
----------
arg
dict of properties compatible with this constructor or
an instance of :class:`plotly.graph_objs.Pointcloud`
customdata
Assigns extra data each datum. This may be useful when
listening to hover, click and selection events. Note
that, "scatter" traces also appends customdata items in
the markers DOM elements
customdatasrc
Sets the source reference on Chart Studio Cloud for
`customdata`.
hoverinfo
Determines which trace information appear on hover. If
`none` or `skip` are set, no information is displayed
upon hovering. But, if `none` is set, click and hover
events are still fired.
hoverinfosrc
Sets the source reference on Chart Studio Cloud for
`hoverinfo`.
hoverlabel
:class:`plotly.graph_objects.pointcloud.Hoverlabel`
instance or dict with compatible properties
ids
Assigns id labels to each datum. These ids for object
constancy of data points during animation. Should be an
array of strings, not numbers or any other type.
idssrc
Sets the source reference on Chart Studio Cloud for
`ids`.
indices
A sequential value, 0..n, supply it to avoid creating
this array inside plotting. If specified, it must be a
typed `Int32Array` array. Its length must be equal to
or greater than the number of points. For the best
performance and memory use, create one large `indices`
typed array that is guaranteed to be at least as long
as the largest number of points during use, and reuse
it on each `Plotly.restyle()` call.
indicessrc
Sets the source reference on Chart Studio Cloud for
`indices`.
legend
Sets the reference to a legend to show this trace in.
References to these legends are "legend", "legend2",
"legend3", etc. Settings for these legends are set in
the layout, under `layout.legend`, `layout.legend2`,
etc.
legendgroup
Sets the legend group for this trace. Traces and shapes
part of the same legend group hide/show at the same
time when toggling legend items.
legendgrouptitle
:class:`plotly.graph_objects.pointcloud.Legendgrouptitl
e` instance or dict with compatible properties
legendrank
Sets the legend rank for this trace. Items and groups
with smaller ranks are presented on top/left side while
with "reversed" `legend.traceorder` they are on
bottom/right side. The default legendrank is 1000, so
that you can use ranks less than 1000 to place certain
items before all unranked items, and ranks greater than
1000 to go after all unranked items. When having
unranked or equal rank items shapes would be displayed
after traces i.e. according to their order in data and
layout.
legendwidth
Sets the width (in px or fraction) of the legend for
this trace.
marker
:class:`plotly.graph_objects.pointcloud.Marker`
instance or dict with compatible properties
meta
Assigns extra meta information associated with this
trace that can be used in various text attributes.
Attributes such as trace `name`, graph, axis and
colorbar `title.text`, annotation `text`
`rangeselector`, `updatemenues` and `sliders` `label`
text all support `meta`. To access the trace `meta`
values in an attribute in the same trace, simply use
`%{meta[i]}` where `i` is the index or key of the
`meta` item in question. To access trace `meta` in
layout attributes, use `%{data[n[.meta[i]}` where `i`
is the index or key of the `meta` and `n` is the trace
index.
metasrc
Sets the source reference on Chart Studio Cloud for
`meta`.
name
Sets the trace name. The trace name appears as the
legend item and on hover.
opacity
Sets the opacity of the trace.
showlegend
Determines whether or not an item corresponding to this
trace is shown in the legend.
stream
:class:`plotly.graph_objects.pointcloud.Stream`
instance or dict with compatible properties
text
Sets text elements associated with each (x,y) pair. If
a single string, the same string appears over all the
data points. If an array of string, the items are
mapped in order to the this trace's (x,y) coordinates.
If trace `hoverinfo` contains a "text" flag and
"hovertext" is not set, these elements will be seen in
the hover labels.
textsrc
Sets the source reference on Chart Studio Cloud for
`text`.
uid
Assign an id to this trace, Use this to provide object
constancy between traces during animations and
transitions.
uirevision
Controls persistence of some user-driven changes to the
trace: `constraintrange` in `parcoords` traces, as well
as some `editable: true` modifications such as `name`
and `colorbar.title`. Defaults to `layout.uirevision`.
Note that other user-driven trace attribute changes are
controlled by `layout` attributes: `trace.visible` is
controlled by `layout.legend.uirevision`,
`selectedpoints` is controlled by
`layout.selectionrevision`, and `colorbar.(x|y)`
(accessible with `config: {editable: true}`) is
controlled by `layout.editrevision`. Trace changes are
tracked by `uid`, which only falls back on trace index
if no `uid` is provided. So if your app can add/remove
traces before the end of the `data` array, such that
the same trace has a different index, you can still
preserve user-driven changes if you give each trace a
`uid` that stays with it as it moves.
visible
Determines whether or not this trace is visible. If
"legendonly", the trace is not drawn, but can appear as
a legend item (provided that the legend itself is
visible).
x
Sets the x coordinates.
xaxis
Sets a reference between this trace's x coordinates and
a 2D cartesian x axis. If "x" (the default value), the
x coordinates refer to `layout.xaxis`. If "x2", the x
coordinates refer to `layout.xaxis2`, and so on.
xbounds
Specify `xbounds` in the shape of `[xMin, xMax] to
avoid looping through the `xy` typed array. Use it in
conjunction with `xy` and `ybounds` for the performance
benefits.
xboundssrc
Sets the source reference on Chart Studio Cloud for
`xbounds`.
xsrc
Sets the source reference on Chart Studio Cloud for
`x`.
xy
Faster alternative to specifying `x` and `y`
separately. If supplied, it must be a typed
`Float32Array` array that represents points such that
`xy[i * 2] = x[i]` and `xy[i * 2 + 1] = y[i]`
xysrc
Sets the source reference on Chart Studio Cloud for
`xy`.
y
Sets the y coordinates.
yaxis
Sets a reference between this trace's y coordinates and
a 2D cartesian y axis. If "y" (the default value), the
y coordinates refer to `layout.yaxis`. If "y2", the y
coordinates refer to `layout.yaxis2`, and so on.
ybounds
Specify `ybounds` in the shape of `[yMin, yMax] to
avoid looping through the `xy` typed array. Use it in
conjunction with `xy` and `xbounds` for the performance
benefits.
yboundssrc
Sets the source reference on Chart Studio Cloud for
`ybounds`.
ysrc
Sets the source reference on Chart Studio Cloud for
`y`.
Returns
-------
Pointcloud
"""
super(Pointcloud, self).__init__("pointcloud")
if "_parent" in kwargs:
self._parent = kwargs["_parent"]
return
# Validate arg
# ------------
if arg is None:
arg = {}
elif isinstance(arg, self.__class__):
arg = arg.to_plotly_json()
elif isinstance(arg, dict):
arg = _copy.copy(arg)
else:
raise ValueError(
"""\
The first argument to the plotly.graph_objs.Pointcloud
constructor must be a dict or
an instance of :class:`plotly.graph_objs.Pointcloud`"""
)
# Handle skip_invalid
# -------------------
self._skip_invalid = kwargs.pop("skip_invalid", False)
self._validate = kwargs.pop("_validate", True)
# Populate data dict with properties
# ----------------------------------
_v = arg.pop("customdata", None)
_v = customdata if customdata is not None else _v
if _v is not None:
self["customdata"] = _v
_v = arg.pop("customdatasrc", None)
_v = customdatasrc if customdatasrc is not None else _v
if _v is not None:
self["customdatasrc"] = _v
_v = arg.pop("hoverinfo", None)
_v = hoverinfo if hoverinfo is not None else _v
if _v is not None:
self["hoverinfo"] = _v
_v = arg.pop("hoverinfosrc", None)
_v = hoverinfosrc if hoverinfosrc is not None else _v
if _v is not None:
self["hoverinfosrc"] = _v
_v = arg.pop("hoverlabel", None)
_v = hoverlabel if hoverlabel is not None else _v
if _v is not None:
self["hoverlabel"] = _v
_v = arg.pop("ids", None)
_v = ids if ids is not None else _v
if _v is not None:
self["ids"] = _v
_v = arg.pop("idssrc", None)
_v = idssrc if idssrc is not None else _v
if _v is not None:
self["idssrc"] = _v
_v = arg.pop("indices", None)
_v = indices if indices is not None else _v
if _v is not None:
self["indices"] = _v
_v = arg.pop("indicessrc", None)
_v = indicessrc if indicessrc is not None else _v
if _v is not None:
self["indicessrc"] = _v
_v = arg.pop("legend", None)
_v = legend if legend is not None else _v
if _v is not None:
self["legend"] = _v
_v = arg.pop("legendgroup", None)
_v = legendgroup if legendgroup is not None else _v
if _v is not None:
self["legendgroup"] = _v
_v = arg.pop("legendgrouptitle", None)
_v = legendgrouptitle if legendgrouptitle is not None else _v
if _v is not None:
self["legendgrouptitle"] = _v
_v = arg.pop("legendrank", None)
_v = legendrank if legendrank is not None else _v
if _v is not None:
self["legendrank"] = _v
_v = arg.pop("legendwidth", None)
_v = legendwidth if legendwidth is not None else _v
if _v is not None:
self["legendwidth"] = _v
_v = arg.pop("marker", None)
_v = marker if marker is not None else _v
if _v is not None:
self["marker"] = _v
_v = arg.pop("meta", None)
_v = meta if meta is not None else _v
if _v is not None:
self["meta"] = _v
_v = arg.pop("metasrc", None)
_v = metasrc if metasrc is not None else _v
if _v is not None:
self["metasrc"] = _v
_v = arg.pop("name", None)
_v = name if name is not None else _v
if _v is not None:
self["name"] = _v
_v = arg.pop("opacity", None)
_v = opacity if opacity is not None else _v
if _v is not None:
self["opacity"] = _v
_v = arg.pop("showlegend", None)
_v = showlegend if showlegend is not None else _v
if _v is not None:
self["showlegend"] = _v
_v = arg.pop("stream", None)
_v = stream if stream is not None else _v
if _v is not None:
self["stream"] = _v
_v = arg.pop("text", None)
_v = text if text is not None else _v
if _v is not None:
self["text"] = _v
_v = arg.pop("textsrc", None)
_v = textsrc if textsrc is not None else _v
if _v is not None:
self["textsrc"] = _v
_v = arg.pop("uid", None)
_v = uid if uid is not None else _v
if _v is not None:
self["uid"] = _v
_v = arg.pop("uirevision", None)
_v = uirevision if uirevision is not None else _v
if _v is not None:
self["uirevision"] = _v
_v = arg.pop("visible", None)
_v = visible if visible is not None else _v
if _v is not None:
self["visible"] = _v
_v = arg.pop("x", None)
_v = x if x is not None else _v
if _v is not None:
self["x"] = _v
_v = arg.pop("xaxis", None)
_v = xaxis if xaxis is not None else _v
if _v is not None:
self["xaxis"] = _v
_v = arg.pop("xbounds", None)
_v = xbounds if xbounds is not None else _v
if _v is not None:
self["xbounds"] = _v
_v = arg.pop("xboundssrc", None)
_v = xboundssrc if xboundssrc is not None else _v
if _v is not None:
self["xboundssrc"] = _v
_v = arg.pop("xsrc", None)
_v = xsrc if xsrc is not None else _v
if _v is not None:
self["xsrc"] = _v
_v = arg.pop("xy", None)
_v = xy if xy is not None else _v
if _v is not None:
self["xy"] = _v
_v = arg.pop("xysrc", None)
_v = xysrc if xysrc is not None else _v
if _v is not None:
self["xysrc"] = _v
_v = arg.pop("y", None)
_v = y if y is not None else _v
if _v is not None:
self["y"] = _v
_v = arg.pop("yaxis", None)
_v = yaxis if yaxis is not None else _v
if _v is not None:
self["yaxis"] = _v
_v = arg.pop("ybounds", None)
_v = ybounds if ybounds is not None else _v
if _v is not None:
self["ybounds"] = _v
_v = arg.pop("yboundssrc", None)
_v = yboundssrc if yboundssrc is not None else _v
if _v is not None:
self["yboundssrc"] = _v
_v = arg.pop("ysrc", None)
_v = ysrc if ysrc is not None else _v
if _v is not None:
self["ysrc"] = _v
# Read-only literals
# ------------------
self._props["type"] = "pointcloud"
arg.pop("type", None)
# Process unknown kwargs
# ----------------------
self._process_kwargs(**dict(arg, **kwargs))
# Reset skip_invalid
# ------------------
self._skip_invalid = False