wg-backend-django/dell-env/lib/python3.11/site-packages/plotly/io/_orca.py
2023-10-30 14:40:43 +07:00

1713 lines
50 KiB
Python

import atexit
import json
import os
import socket
import subprocess
import sys
import threading
import warnings
from copy import copy
from contextlib import contextmanager
from pathlib import Path
from shutil import which
import tenacity
import plotly
from plotly.files import PLOTLY_DIR, ensure_writable_plotly_dir
from plotly.io._utils import validate_coerce_fig_to_dict
from plotly.optional_imports import get_module
psutil = get_module("psutil")
# Valid image format constants
# ----------------------------
valid_formats = ("png", "jpeg", "webp", "svg", "pdf", "eps")
format_conversions = {fmt: fmt for fmt in valid_formats}
format_conversions.update({"jpg": "jpeg"})
# Utility functions
# -----------------
def raise_format_value_error(val):
raise ValueError(
"""
Invalid value of type {typ} receive as an image format specification.
Received value: {v}
An image format must be specified as one of the following string values:
{valid_formats}""".format(
typ=type(val), v=val, valid_formats=sorted(format_conversions.keys())
)
)
def validate_coerce_format(fmt):
"""
Validate / coerce a user specified image format, and raise an informative
exception if format is invalid.
Parameters
----------
fmt
A value that may or may not be a valid image format string.
Returns
-------
str or None
A valid image format string as supported by orca. This may not
be identical to the input image designation. For example,
the resulting string will always be lower case and 'jpg' is
converted to 'jpeg'.
If the input format value is None, then no exception is raised and
None is returned.
Raises
------
ValueError
if the input `fmt` cannot be interpreted as a valid image format.
"""
# Let None pass through
if fmt is None:
return None
# Check format type
if not isinstance(fmt, str) or not fmt:
raise_format_value_error(fmt)
# Make lower case
fmt = fmt.lower()
# Remove leading period, if any.
# For example '.png' is accepted and converted to 'png'
if fmt[0] == ".":
fmt = fmt[1:]
# Check string value
if fmt not in format_conversions:
raise_format_value_error(fmt)
# Return converted string specification
return format_conversions[fmt]
def find_open_port():
"""
Use the socket module to find an open port.
Returns
-------
int
An open port
"""
s = socket.socket()
s.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
s.bind(("", 0))
_, port = s.getsockname()
s.close()
return port
# Orca configuration class
# ------------------------
class OrcaConfig(object):
"""
Singleton object containing the current user defined configuration
properties for orca.
These parameters may optionally be saved to the user's ~/.plotly
directory using the `save` method, in which case they are automatically
restored in future sessions.
"""
def __init__(self):
# Initialize properties dict
self._props = {}
# Compute absolute path to the 'plotly/package_data/' directory
root_dir = os.path.dirname(os.path.abspath(plotly.__file__))
self.package_dir = os.path.join(root_dir, "package_data")
# Load pre-existing configuration
self.reload(warn=False)
# Compute constants
plotlyjs = os.path.join(self.package_dir, "plotly.min.js")
self._constants = {
"plotlyjs": plotlyjs,
"config_file": os.path.join(PLOTLY_DIR, ".orca"),
}
def restore_defaults(self, reset_server=True):
"""
Reset all orca configuration properties to their default values
"""
self._props = {}
if reset_server:
# Server must restart before setting is active
reset_status()
def update(self, d={}, **kwargs):
"""
Update one or more properties from a dict or from input keyword
arguments.
Parameters
----------
d: dict
Dictionary from property names to new property values.
kwargs
Named argument value pairs where the name is a configuration
property name and the value is the new property value.
Returns
-------
None
Examples
--------
Update configuration properties using a dictionary
>>> import plotly.io as pio
>>> pio.orca.config.update({'timeout': 30, 'default_format': 'svg'})
Update configuration properties using keyword arguments
>>> pio.orca.config.update(timeout=30, default_format='svg'})
"""
# Combine d and kwargs
if not isinstance(d, dict):
raise ValueError(
"""
The first argument to update must be a dict, \
but received value of type {typ}l
Received value: {val}""".format(
typ=type(d), val=d
)
)
updates = copy(d)
updates.update(kwargs)
# Validate keys
for k in updates:
if k not in self._props:
raise ValueError("Invalid property name: {k}".format(k=k))
# Apply keys
for k, v in updates.items():
setattr(self, k, v)
def reload(self, warn=True):
"""
Reload orca settings from ~/.plotly/.orca, if any.
Note: Settings are loaded automatically when plotly is imported.
This method is only needed if the setting are changed by some outside
process (e.g. a text editor) during an interactive session.
Parameters
----------
warn: bool
If True, raise informative warnings if settings cannot be restored.
If False, do not raise warnings if setting cannot be restored.
Returns
-------
None
"""
if os.path.exists(self.config_file):
# ### Load file into a string ###
try:
with open(self.config_file, "r") as f:
orca_str = f.read()
except:
if warn:
warnings.warn(
"""\
Unable to read orca configuration file at {path}""".format(
path=self.config_file
)
)
return
# ### Parse as JSON ###
try:
orca_props = json.loads(orca_str)
except ValueError:
if warn:
warnings.warn(
"""\
Orca configuration file at {path} is not valid JSON""".format(
path=self.config_file
)
)
return
# ### Update _props ###
for k, v in orca_props.items():
self._props[k] = v
elif warn:
warnings.warn(
"""\
Orca configuration file at {path} not found""".format(
path=self.config_file
)
)
def save(self):
"""
Attempt to save current settings to disk, so that they are
automatically restored for future sessions.
This operation requires write access to the path returned by
in the `config_file` property.
Returns
-------
None
"""
if ensure_writable_plotly_dir():
with open(self.config_file, "w") as f:
json.dump(self._props, f, indent=4)
else:
warnings.warn(
"""\
Failed to write orca configuration file at '{path}'""".format(
path=self.config_file
)
)
@property
def server_url(self):
"""
The server URL to use for an external orca server, or None if orca
should be managed locally
Overrides executable, port, timeout, mathjax, topojson,
and mapbox_access_token
Returns
-------
str or None
"""
return self._props.get("server_url", None)
@server_url.setter
def server_url(self, val):
if val is None:
self._props.pop("server_url", None)
return
if not isinstance(val, str):
raise ValueError(
"""
The server_url property must be a string, but received value of type {typ}.
Received value: {val}""".format(
typ=type(val), val=val
)
)
if not val.startswith("http://") and not val.startswith("https://"):
val = "http://" + val
shutdown_server()
self.executable = None
self.port = None
self.timeout = None
self.mathjax = None
self.topojson = None
self.mapbox_access_token = None
self._props["server_url"] = val
@property
def port(self):
"""
The specific port to use to communicate with the orca server, or
None if the port is to be chosen automatically.
If an orca server is active, the port in use is stored in the
plotly.io.orca.status.port property.
Returns
-------
int or None
"""
return self._props.get("port", None)
@port.setter
def port(self, val):
if val is None:
self._props.pop("port", None)
return
if not isinstance(val, int):
raise ValueError(
"""
The port property must be an integer, but received value of type {typ}.
Received value: {val}""".format(
typ=type(val), val=val
)
)
self._props["port"] = val
@property
def executable(self):
"""
The name or full path of the orca executable.
- If a name (e.g. 'orca'), then it should be the name of an orca
executable on the PATH. The directories on the PATH can be
displayed by running the following command:
>>> import os
>>> print(os.environ.get('PATH').replace(os.pathsep, os.linesep))
- If a full path (e.g. '/path/to/orca'), then
it should be the full path to an orca executable. In this case
the executable does not need to reside on the PATH.
If an orca server has been validated, then the full path to the
validated orca executable is stored in the
plotly.io.orca.status.executable property.
Returns
-------
str
"""
executable_list = self._props.get("executable_list", ["orca"])
if executable_list is None:
return None
else:
return " ".join(executable_list)
@executable.setter
def executable(self, val):
if val is None:
self._props.pop("executable", None)
else:
if not isinstance(val, str):
raise ValueError(
"""
The executable property must be a string, but received value of type {typ}.
Received value: {val}""".format(
typ=type(val), val=val
)
)
if isinstance(val, str):
val = [val]
self._props["executable_list"] = val
# Server and validation must restart before setting is active
reset_status()
@property
def timeout(self):
"""
The number of seconds of inactivity required before the orca server
is shut down.
For example, if timeout is set to 20, then the orca
server will shutdown once is has not been used for at least
20 seconds. If timeout is set to None, then the server will not be
automatically shut down due to inactivity.
Regardless of the value of timeout, a running orca server may be
manually shut down like this:
>>> import plotly.io as pio
>>> pio.orca.shutdown_server()
Returns
-------
int or float or None
"""
return self._props.get("timeout", None)
@timeout.setter
def timeout(self, val):
if val is None:
self._props.pop("timeout", None)
else:
if not isinstance(val, (int, float)):
raise ValueError(
"""
The timeout property must be a number, but received value of type {typ}.
Received value: {val}""".format(
typ=type(val), val=val
)
)
self._props["timeout"] = val
# Server must restart before setting is active
shutdown_server()
@property
def default_width(self):
"""
The default width to use on image export. This value is only
applied if no width value is supplied to the plotly.io
to_image or write_image functions.
Returns
-------
int or None
"""
return self._props.get("default_width", None)
@default_width.setter
def default_width(self, val):
if val is None:
self._props.pop("default_width", None)
return
if not isinstance(val, int):
raise ValueError(
"""
The default_width property must be an int, but received value of type {typ}.
Received value: {val}""".format(
typ=type(val), val=val
)
)
self._props["default_width"] = val
@property
def default_height(self):
"""
The default height to use on image export. This value is only
applied if no height value is supplied to the plotly.io
to_image or write_image functions.
Returns
-------
int or None
"""
return self._props.get("default_height", None)
@default_height.setter
def default_height(self, val):
if val is None:
self._props.pop("default_height", None)
return
if not isinstance(val, int):
raise ValueError(
"""
The default_height property must be an int, but received value of type {typ}.
Received value: {val}""".format(
typ=type(val), val=val
)
)
self._props["default_height"] = val
@property
def default_format(self):
"""
The default image format to use on image export.
Valid image formats strings are:
- 'png'
- 'jpg' or 'jpeg'
- 'webp'
- 'svg'
- 'pdf'
- 'eps' (Requires the poppler library to be installed)
This value is only applied if no format value is supplied to the
plotly.io to_image or write_image functions.
Returns
-------
str or None
"""
return self._props.get("default_format", "png")
@default_format.setter
def default_format(self, val):
if val is None:
self._props.pop("default_format", None)
return
val = validate_coerce_format(val)
self._props["default_format"] = val
@property
def default_scale(self):
"""
The default image scaling factor to use on image export.
This value is only applied if no scale value is supplied to the
plotly.io to_image or write_image functions.
Returns
-------
int or None
"""
return self._props.get("default_scale", 1)
@default_scale.setter
def default_scale(self, val):
if val is None:
self._props.pop("default_scale", None)
return
if not isinstance(val, (int, float)):
raise ValueError(
"""
The default_scale property must be a number, but received value of type {typ}.
Received value: {val}""".format(
typ=type(val), val=val
)
)
self._props["default_scale"] = val
@property
def topojson(self):
"""
Path to the topojson files needed to render choropleth traces.
If None, topojson files from the plot.ly CDN are used.
Returns
-------
str
"""
return self._props.get("topojson", None)
@topojson.setter
def topojson(self, val):
if val is None:
self._props.pop("topojson", None)
else:
if not isinstance(val, str):
raise ValueError(
"""
The topojson property must be a string, but received value of type {typ}.
Received value: {val}""".format(
typ=type(val), val=val
)
)
self._props["topojson"] = val
# Server must restart before setting is active
shutdown_server()
@property
def mathjax(self):
"""
Path to the MathJax bundle needed to render LaTeX characters
Returns
-------
str
"""
return self._props.get(
"mathjax",
("https://cdnjs.cloudflare.com" "/ajax/libs/mathjax/2.7.5/MathJax.js"),
)
@mathjax.setter
def mathjax(self, val):
if val is None:
self._props.pop("mathjax", None)
else:
if not isinstance(val, str):
raise ValueError(
"""
The mathjax property must be a string, but received value of type {typ}.
Received value: {val}""".format(
typ=type(val), val=val
)
)
self._props["mathjax"] = val
# Server must restart before setting is active
shutdown_server()
@property
def mapbox_access_token(self):
"""
Mapbox access token required to render mapbox traces.
Returns
-------
str
"""
return self._props.get("mapbox_access_token", None)
@mapbox_access_token.setter
def mapbox_access_token(self, val):
if val is None:
self._props.pop("mapbox_access_token", None)
else:
if not isinstance(val, str):
raise ValueError(
"""
The mapbox_access_token property must be a string, \
but received value of type {typ}.
Received value: {val}""".format(
typ=type(val), val=val
)
)
self._props["mapbox_access_token"] = val
# Server must restart before setting is active
shutdown_server()
@property
def use_xvfb(self):
dflt = "auto"
return self._props.get("use_xvfb", dflt)
@use_xvfb.setter
def use_xvfb(self, val):
valid_vals = [True, False, "auto"]
if val is None:
self._props.pop("use_xvfb", None)
else:
if val not in valid_vals:
raise ValueError(
"""
The use_xvfb property must be one of {valid_vals}
Received value of type {typ}: {val}""".format(
valid_vals=valid_vals, typ=type(val), val=repr(val)
)
)
self._props["use_xvfb"] = val
# Server and validation must restart before setting is active
reset_status()
@property
def plotlyjs(self):
"""
The plotly.js bundle being used for image rendering.
Returns
-------
str
"""
return self._constants.get("plotlyjs", None)
@property
def config_file(self):
"""
Path to orca configuration file
Using the `plotly.io.config.save()` method will save the current
configuration settings to this file. Settings in this file are
restored at the beginning of each sessions.
Returns
-------
str
"""
return os.path.join(PLOTLY_DIR, ".orca")
def __repr__(self):
"""
Display a nice representation of the current orca configuration.
"""
return """\
orca configuration
------------------
server_url: {server_url}
executable: {executable}
port: {port}
timeout: {timeout}
default_width: {default_width}
default_height: {default_height}
default_scale: {default_scale}
default_format: {default_format}
mathjax: {mathjax}
topojson: {topojson}
mapbox_access_token: {mapbox_access_token}
use_xvfb: {use_xvfb}
constants
---------
plotlyjs: {plotlyjs}
config_file: {config_file}
""".format(
server_url=self.server_url,
port=self.port,
executable=self.executable,
timeout=self.timeout,
default_width=self.default_width,
default_height=self.default_height,
default_scale=self.default_scale,
default_format=self.default_format,
mathjax=self.mathjax,
topojson=self.topojson,
mapbox_access_token=self.mapbox_access_token,
plotlyjs=self.plotlyjs,
config_file=self.config_file,
use_xvfb=self.use_xvfb,
)
# Make config a singleton object
# ------------------------------
config = OrcaConfig()
del OrcaConfig
# Orca status class
# ------------------------
class OrcaStatus(object):
"""
Class to store information about the current status of the orca server.
"""
_props = {
"state": "unvalidated", # or 'validated' or 'running'
"executable_list": None,
"version": None,
"pid": None,
"port": None,
"command": None,
}
@property
def state(self):
"""
A string representing the state of the orca server process
One of:
- unvalidated: The orca executable has not yet been searched for or
tested to make sure its valid.
- validated: The orca executable has been located and tested for
validity, but it is not running.
- running: The orca server process is currently running.
"""
return self._props["state"]
@property
def executable(self):
"""
If the `state` property is 'validated' or 'running', this property
contains the full path to the orca executable.
This path can be specified explicitly by setting the `executable`
property of the `plotly.io.orca.config` object.
This property will be None if the `state` is 'unvalidated'.
"""
executable_list = self._props["executable_list"]
if executable_list is None:
return None
else:
return " ".join(executable_list)
@property
def version(self):
"""
If the `state` property is 'validated' or 'running', this property
contains the version of the validated orca executable.
This property will be None if the `state` is 'unvalidated'.
"""
return self._props["version"]
@property
def pid(self):
"""
The process id of the orca server process, if any. This property
will be None if the `state` is not 'running'.
"""
return self._props["pid"]
@property
def port(self):
"""
The port number that the orca server process is listening to, if any.
This property will be None if the `state` is not 'running'.
This port can be specified explicitly by setting the `port`
property of the `plotly.io.orca.config` object.
"""
return self._props["port"]
@property
def command(self):
"""
The command arguments used to launch the running orca server, if any.
This property will be None if the `state` is not 'running'.
"""
return self._props["command"]
def __repr__(self):
"""
Display a nice representation of the current orca server status.
"""
return """\
orca status
-----------
state: {state}
executable: {executable}
version: {version}
port: {port}
pid: {pid}
command: {command}
""".format(
executable=self.executable,
version=self.version,
port=self.port,
pid=self.pid,
state=self.state,
command=self.command,
)
# Make status a singleton object
# ------------------------------
status = OrcaStatus()
del OrcaStatus
@contextmanager
def orca_env():
"""
Context manager to clear and restore environment variables that are
problematic for orca to function properly
NODE_OPTIONS: When this variable is set, orca <v1.2 will have a
segmentation fault due to an electron bug.
See: https://github.com/electron/electron/issues/12695
ELECTRON_RUN_AS_NODE: When this environment variable is set the call
to orca is transformed into a call to nodejs.
See https://github.com/plotly/orca/issues/149#issuecomment-443506732
"""
clear_env_vars = ["NODE_OPTIONS", "ELECTRON_RUN_AS_NODE", "LD_PRELOAD"]
orig_env_vars = {}
try:
# Clear and save
orig_env_vars.update(
{var: os.environ.pop(var) for var in clear_env_vars if var in os.environ}
)
yield
finally:
# Restore
for var, val in orig_env_vars.items():
os.environ[var] = val
# Public orca server interaction functions
# ----------------------------------------
def validate_executable():
"""
Attempt to find and validate the orca executable specified by the
`plotly.io.orca.config.executable` property.
If the `plotly.io.orca.status.state` property is 'validated' or 'running'
then this function does nothing.
How it works:
- First, it searches the system PATH for an executable that matches the
name or path specified in the `plotly.io.orca.config.executable`
property.
- Then it runs the executable with the `--help` flag to make sure
it's the plotly orca executable
- Then it runs the executable with the `--version` flag to check the
orca version.
If all of these steps are successful then the `status.state` property
is set to 'validated' and the `status.executable` and `status.version`
properties are populated
Returns
-------
None
"""
# Check state
# -----------
if status.state != "unvalidated":
# Nothing more to do
return
# Initialize error messages
# -------------------------
install_location_instructions = """\
If you haven't installed orca yet, you can do so using conda as follows:
$ conda install -c plotly plotly-orca
Alternatively, see other installation methods in the orca project README at
https://github.com/plotly/orca
After installation is complete, no further configuration should be needed.
If you have installed orca, then for some reason plotly.py was unable to
locate it. In this case, set the `plotly.io.orca.config.executable`
property to the full path of your orca executable. For example:
>>> plotly.io.orca.config.executable = '/path/to/orca'
After updating this executable property, try the export operation again.
If it is successful then you may want to save this configuration so that it
will be applied automatically in future sessions. You can do this as follows:
>>> plotly.io.orca.config.save()
If you're still having trouble, feel free to ask for help on the forums at
https://community.plot.ly/c/api/python
"""
# Try to find an executable
# -------------------------
# Search for executable name or path in config.executable
executable = which(config.executable)
path = os.environ.get("PATH", os.defpath)
formatted_path = path.replace(os.pathsep, "\n ")
if executable is None:
raise ValueError(
"""
The orca executable is required to export figures as static images,
but it could not be found on the system path.
Searched for executable '{executable}' on the following path:
{formatted_path}
{instructions}""".format(
executable=config.executable,
formatted_path=formatted_path,
instructions=install_location_instructions,
)
)
# Check if we should run with Xvfb
# --------------------------------
xvfb_args = [
"--auto-servernum",
"--server-args",
"-screen 0 640x480x24 +extension RANDR +extension GLX",
executable,
]
if config.use_xvfb == True:
# Use xvfb
xvfb_run_executable = which("xvfb-run")
if not xvfb_run_executable:
raise ValueError(
"""
The plotly.io.orca.config.use_xvfb property is set to True, but the
xvfb-run executable could not be found on the system path.
Searched for the executable 'xvfb-run' on the following path:
{formatted_path}""".format(
formatted_path=formatted_path
)
)
executable_list = [xvfb_run_executable] + xvfb_args
elif (
config.use_xvfb == "auto"
and sys.platform.startswith("linux")
and not os.environ.get("DISPLAY")
and which("xvfb-run")
):
# use_xvfb is 'auto', we're on linux without a display server,
# and xvfb-run is available. Use it.
xvfb_run_executable = which("xvfb-run")
executable_list = [xvfb_run_executable] + xvfb_args
else:
# Do not use xvfb
executable_list = [executable]
# Run executable with --help and see if it's our orca
# ---------------------------------------------------
invalid_executable_msg = """
The orca executable is required in order to export figures as static images,
but the executable that was found at '{executable}'
does not seem to be a valid plotly orca executable. Please refer to the end of
this message for details on what went wrong.
{instructions}""".format(
executable=executable, instructions=install_location_instructions
)
# ### Run with Popen so we get access to stdout and stderr
with orca_env():
p = subprocess.Popen(
executable_list + ["--help"], stdout=subprocess.PIPE, stderr=subprocess.PIPE
)
help_result, help_error = p.communicate()
if p.returncode != 0:
err_msg = (
invalid_executable_msg
+ """
Here is the error that was returned by the command
$ {executable} --help
[Return code: {returncode}]
{err_msg}
""".format(
executable=" ".join(executable_list),
err_msg=help_error.decode("utf-8"),
returncode=p.returncode,
)
)
# Check for Linux without X installed.
if sys.platform.startswith("linux") and not os.environ.get("DISPLAY"):
err_msg += """\
Note: When used on Linux, orca requires an X11 display server, but none was
detected. Please install Xvfb and configure plotly.py to run orca using Xvfb
as follows:
>>> import plotly.io as pio
>>> pio.orca.config.use_xvfb = True
You can save this configuration for use in future sessions as follows:
>>> pio.orca.config.save()
See https://www.x.org/releases/X11R7.6/doc/man/man1/Xvfb.1.xhtml
for more info on Xvfb
"""
raise ValueError(err_msg)
if not help_result:
raise ValueError(
invalid_executable_msg
+ """
The error encountered is that no output was returned by the command
$ {executable} --help
""".format(
executable=" ".join(executable_list)
)
)
if "Plotly's image-exporting utilities" not in help_result.decode("utf-8"):
raise ValueError(
invalid_executable_msg
+ """
The error encountered is that unexpected output was returned by the command
$ {executable} --help
{help_result}
""".format(
executable=" ".join(executable_list), help_result=help_result
)
)
# Get orca version
# ----------------
# ### Run with Popen so we get access to stdout and stderr
with orca_env():
p = subprocess.Popen(
executable_list + ["--version"],
stdout=subprocess.PIPE,
stderr=subprocess.PIPE,
)
version_result, version_error = p.communicate()
if p.returncode != 0:
raise ValueError(
invalid_executable_msg
+ """
An error occurred while trying to get the version of the orca executable.
Here is the command that plotly.py ran to request the version
$ {executable} --version
This command returned the following error:
[Return code: {returncode}]
{err_msg}
""".format(
executable=" ".join(executable_list),
err_msg=version_error.decode("utf-8"),
returncode=p.returncode,
)
)
if not version_result:
raise ValueError(
invalid_executable_msg
+ """
The error encountered is that no version was reported by the orca executable.
Here is the command that plotly.py ran to request the version:
$ {executable} --version
""".format(
executable=" ".join(executable_list)
)
)
else:
version_result = version_result.decode()
status._props["executable_list"] = executable_list
status._props["version"] = version_result.strip()
status._props["state"] = "validated"
def reset_status():
"""
Shutdown the running orca server, if any, and reset the orca status
to unvalidated.
This command is only needed if the desired orca executable is changed
during an interactive session.
Returns
-------
None
"""
shutdown_server()
status._props["executable_list"] = None
status._props["version"] = None
status._props["state"] = "unvalidated"
# Initialze process control variables
# -----------------------------------
orca_lock = threading.Lock()
orca_state = {"proc": None, "shutdown_timer": None}
# Shutdown
# --------
# The @atexit.register annotation ensures that the shutdown function is
# is run when the Python process is terminated
@atexit.register
def cleanup():
shutdown_server()
def shutdown_server():
"""
Shutdown the running orca server process, if any
Returns
-------
None
"""
# Use double-check locking to make sure the properties of orca_state
# are updated consistently across threads.
if orca_state["proc"] is not None:
with orca_lock:
if orca_state["proc"] is not None:
# We use psutil to kill all child processes of the main orca
# process. This prevents any zombie processes from being
# left over, and it saves us from needing to write
# OS-specific process management code here.
parent = psutil.Process(orca_state["proc"].pid)
for child in parent.children(recursive=True):
try:
child.terminate()
except:
# We tried, move on
pass
try:
# Kill parent process
orca_state["proc"].terminate()
# Wait for the process to shutdown
child_status = orca_state["proc"].wait()
except:
# We tried, move on
pass
# Update our internal process management state
orca_state["proc"] = None
if orca_state["shutdown_timer"] is not None:
orca_state["shutdown_timer"].cancel()
orca_state["shutdown_timer"] = None
orca_state["port"] = None
# Update orca.status so the user has an accurate view
# of the state of the orca server
status._props["state"] = "validated"
status._props["pid"] = None
status._props["port"] = None
status._props["command"] = None
# Launch or get server
def ensure_server():
"""
Start an orca server if none is running. If a server is already running,
then reset the timeout countdown
Returns
-------
None
"""
# Validate psutil
if psutil is None:
raise ValueError(
"""\
Image generation requires the psutil package.
Install using pip:
$ pip install psutil
Install using conda:
$ conda install psutil
"""
)
# Validate requests
if not get_module("requests"):
raise ValueError(
"""\
Image generation requires the requests package.
Install using pip:
$ pip install requests
Install using conda:
$ conda install requests
"""
)
if not config.server_url:
# Validate orca executable only if server_url is not provided
if status.state == "unvalidated":
validate_executable()
# Acquire lock to make sure that we keep the properties of orca_state
# consistent across threads
with orca_lock:
# Cancel the current shutdown timer, if any
if orca_state["shutdown_timer"] is not None:
orca_state["shutdown_timer"].cancel()
# Start a new server process if none is active
if orca_state["proc"] is None:
# Determine server port
if config.port is None:
orca_state["port"] = find_open_port()
else:
orca_state["port"] = config.port
# Build orca command list
cmd_list = status._props["executable_list"] + [
"serve",
"-p",
str(orca_state["port"]),
"--plotly",
config.plotlyjs,
"--graph-only",
]
if config.topojson:
cmd_list.extend(["--topojson", config.topojson])
if config.mathjax:
cmd_list.extend(["--mathjax", config.mathjax])
if config.mapbox_access_token:
cmd_list.extend(
["--mapbox-access-token", config.mapbox_access_token]
)
# Create subprocess that launches the orca server on the
# specified port.
DEVNULL = open(os.devnull, "wb")
with orca_env():
stderr = DEVNULL if "CI" in os.environ else None # fix for CI
orca_state["proc"] = subprocess.Popen(
cmd_list, stdout=DEVNULL, stderr=stderr
)
# Update orca.status so the user has an accurate view
# of the state of the orca server
status._props["state"] = "running"
status._props["pid"] = orca_state["proc"].pid
status._props["port"] = orca_state["port"]
status._props["command"] = cmd_list
# Create new shutdown timer if a timeout was specified
if config.timeout is not None:
t = threading.Timer(config.timeout, shutdown_server)
# Make it a daemon thread so that exit won't wait for timer to
# complete
t.daemon = True
t.start()
orca_state["shutdown_timer"] = t
@tenacity.retry(
wait=tenacity.wait_random(min=5, max=10),
stop=tenacity.stop_after_delay(60000),
)
def request_image_with_retrying(**kwargs):
"""
Helper method to perform an image request to a running orca server process
with retrying logic.
"""
from requests import post
from plotly.io.json import to_json_plotly
if config.server_url:
server_url = config.server_url
else:
server_url = "http://{hostname}:{port}".format(
hostname="localhost", port=orca_state["port"]
)
request_params = {k: v for k, v, in kwargs.items() if v is not None}
json_str = to_json_plotly(request_params)
response = post(server_url + "/", data=json_str)
if response.status_code == 522:
# On "522: client socket timeout", return server and keep trying
shutdown_server()
ensure_server()
raise OSError("522: client socket timeout")
return response
def to_image(fig, format=None, width=None, height=None, scale=None, validate=True):
"""
Convert a figure to a static image bytes string
Parameters
----------
fig:
Figure object or dict representing a figure
format: str or None
The desired image format. One of
- 'png'
- 'jpg' or 'jpeg'
- 'webp'
- 'svg'
- 'pdf'
- 'eps' (Requires the poppler library to be installed)
If not specified, will default to `plotly.io.config.default_format`
width: int or None
The width of the exported image in layout pixels. If the `scale`
property is 1.0, this will also be the width of the exported image
in physical pixels.
If not specified, will default to `plotly.io.config.default_width`
height: int or None
The height of the exported image in layout pixels. If the `scale`
property is 1.0, this will also be the height of the exported image
in physical pixels.
If not specified, will default to `plotly.io.config.default_height`
scale: int or float or None
The scale factor to use when exporting the figure. A scale factor
larger than 1.0 will increase the image resolution with respect
to the figure's layout pixel dimensions. Whereas as scale factor of
less than 1.0 will decrease the image resolution.
If not specified, will default to `plotly.io.config.default_scale`
validate: bool
True if the figure should be validated before being converted to
an image, False otherwise.
Returns
-------
bytes
The image data
"""
# Make sure orca sever is running
# -------------------------------
ensure_server()
# Handle defaults
# ---------------
# Apply configuration defaults to unspecified arguments
if format is None:
format = config.default_format
format = validate_coerce_format(format)
if scale is None:
scale = config.default_scale
if width is None:
width = config.default_width
if height is None:
height = config.default_height
# Validate figure
# ---------------
fig_dict = validate_coerce_fig_to_dict(fig, validate)
# Request image from server
# -------------------------
try:
response = request_image_with_retrying(
figure=fig_dict, format=format, scale=scale, width=width, height=height
)
except OSError as err:
# Get current status string
status_str = repr(status)
if config.server_url:
raise ValueError(
"""
Plotly.py was unable to communicate with the orca server at {server_url}
Please check that the server is running and accessible.
""".format(
server_url=config.server_url
)
)
else:
# Check if the orca server process exists
pid_exists = psutil.pid_exists(status.pid)
# Raise error message based on whether the server process existed
if pid_exists:
raise ValueError(
"""
For some reason plotly.py was unable to communicate with the
local orca server process, even though the server process seems to be running.
Please review the process and connection information below:
{info}
""".format(
info=status_str
)
)
else:
# Reset the status so that if the user tries again, we'll try to
# start the server again
reset_status()
raise ValueError(
"""
For some reason the orca server process is no longer running.
Please review the process and connection information below:
{info}
plotly.py will attempt to start the local server process again the next time
an image export operation is performed.
""".format(
info=status_str
)
)
# Check response
# --------------
if response.status_code == 200:
# All good
return response.content
else:
# ### Something went wrong ###
err_message = """
The image request was rejected by the orca conversion utility
with the following error:
{status}: {msg}
""".format(
status=response.status_code, msg=response.content.decode("utf-8")
)
# ### Try to be helpful ###
# Status codes from /src/component/plotly-graph/constants.js in the
# orca code base.
# statusMsg: {
# 400: 'invalid or malformed request syntax',
# 522: client socket timeout
# 525: 'plotly.js error',
# 526: 'plotly.js version 1.11.0 or up required',
# 530: 'image conversion error'
# }
if response.status_code == 400 and isinstance(fig, dict) and not validate:
err_message += """
Try setting the `validate` argument to True to check for errors in the
figure specification"""
elif response.status_code == 525:
any_mapbox = any(
[
trace.get("type", None) == "scattermapbox"
for trace in fig_dict.get("data", [])
]
)
if any_mapbox and config.mapbox_access_token is None:
err_message += """
Exporting scattermapbox traces requires a mapbox access token.
Create a token in your mapbox account and then set it using:
>>> plotly.io.orca.config.mapbox_access_token = 'pk.abc...'
If you would like this token to be applied automatically in
future sessions, then save your orca configuration as follows:
>>> plotly.io.orca.config.save()
"""
elif response.status_code == 530 and format == "eps":
err_message += """
Exporting to EPS format requires the poppler library. You can install
poppler on MacOS or Linux with:
$ conda install poppler
Or, you can install it on MacOS using homebrew with:
$ brew install poppler
Or, you can install it on Linux using your distribution's package manager to
install the 'poppler-utils' package.
Unfortunately, we don't yet know of an easy way to install poppler on Windows.
"""
raise ValueError(err_message)
def write_image(
fig, file, format=None, scale=None, width=None, height=None, validate=True
):
"""
Convert a figure to a static image and write it to a file or writeable
object
Parameters
----------
fig:
Figure object or dict representing a figure
file: str or writeable
A string representing a local file path or a writeable object
(e.g. a pathlib.Path object or an open file descriptor)
format: str or None
The desired image format. One of
- 'png'
- 'jpg' or 'jpeg'
- 'webp'
- 'svg'
- 'pdf'
- 'eps' (Requires the poppler library to be installed)
If not specified and `file` is a string then this will default to the
file extension. If not specified and `file` is not a string then this
will default to `plotly.io.config.default_format`
width: int or None
The width of the exported image in layout pixels. If the `scale`
property is 1.0, this will also be the width of the exported image
in physical pixels.
If not specified, will default to `plotly.io.config.default_width`
height: int or None
The height of the exported image in layout pixels. If the `scale`
property is 1.0, this will also be the height of the exported image
in physical pixels.
If not specified, will default to `plotly.io.config.default_height`
scale: int or float or None
The scale factor to use when exporting the figure. A scale factor
larger than 1.0 will increase the image resolution with respect
to the figure's layout pixel dimensions. Whereas as scale factor of
less than 1.0 will decrease the image resolution.
If not specified, will default to `plotly.io.config.default_scale`
validate: bool
True if the figure should be validated before being converted to
an image, False otherwise.
Returns
-------
None
"""
# Try to cast `file` as a pathlib object `path`.
# ----------------------------------------------
if isinstance(file, str):
# Use the standard Path constructor to make a pathlib object.
path = Path(file)
elif isinstance(file, Path):
# `file` is already a Path object.
path = file
else:
# We could not make a Path object out of file. Either `file` is an open file
# descriptor with a `write()` method or it's an invalid object.
path = None
# Infer format if not specified
# -----------------------------
if path is not None and format is None:
ext = path.suffix
if ext:
format = ext.lstrip(".")
else:
raise ValueError(
"""
Cannot infer image type from output path '{file}'.
Please add a file extension or specify the type using the format parameter.
For example:
>>> import plotly.io as pio
>>> pio.write_image(fig, file_path, format='png')
""".format(
file=file
)
)
# Request image
# -------------
# Do this first so we don't create a file if image conversion fails
img_data = to_image(
fig, format=format, scale=scale, width=width, height=height, validate=validate
)
# Open file
# ---------
if path is None:
# We previously failed to make sense of `file` as a pathlib object.
# Attempt to write to `file` as an open file descriptor.
try:
file.write(img_data)
return
except AttributeError:
pass
raise ValueError(
"""
The 'file' argument '{file}' is not a string, pathlib.Path object, or file descriptor.
""".format(
file=file
)
)
else:
# We previously succeeded in interpreting `file` as a pathlib object.
# Now we can use `write_bytes()`.
path.write_bytes(img_data)